TITLE	Technical Reports (Part I). End of Project Report, 1968-1971, Volume III.
Institution	Western Nevada Regional Education Center, Lovelock.
SPONS AGENCY	Division of Plans and Supplementary Centers, BESE.
PUB DATE	26 Jun 71
NOTE	207p.
EDRS PRICE	MF-\$0.65 HC-\$9.87
DESCRIPTORS	Academic Achievement; Data Collection; *Electronic
	Data Processing; *Information Processing; *Rural
	Areas; Secondary Grades; State Agencies; statistical
	Analysis; Student Records; *Supplementary Educational
	Centers; Tables (Data) ; *Technical Reports
IDENTIFIERS	Nevada

ABSIRACT

The pamphlets included in this volume are technical reports prepared as outgrowths of the Student Information Systems of the Western Nevada Regional Education Center ($W N-R E C$) funded by a Ticle III (Elementary and Secondary Education Act) grant. These recorts describe methods of interpreting the printouts from the Student Information System; methods of handling test data for school placement purposes; and methods of approximating IQ's or standardized test scores when neither of these is available. Pamphlets included in the volume are student placement in Mathematics Based on Previous Achievement, Overage Students and Students in Lowest Quartile, Using Student Data from Computer Printouts, Using Student Entry Data and Standardized Test Data, Secondary Courses offered in the WN-REC Region, and Predicting Stanford Achievement Scores (National Percentiles) from student Marks. (PS)

END OF PROJECT REPORT
1968-1971
VOL. III

TECHNICAL REPORTS (PART I)

WN-REC Staff

June 26, 1971

TABLE OF CONTENTS

INTRODUCTION

PAMPHLETS in this order:
Student Placement in Mathematics Based on Previous Achievement An Example of a Step-wise Multiple Linear Regression

Overage Students and Students in Lowest Quartile
District A, Ninth Grade
District B, Ninth Grade
District C, Ninth Grade
District D, Ninth Grade
District E, Ninth Grade
District F, Third, Eighth, Ninth Grades
Using Student Data From Computer Printouts, Three Examples

1. Characteristics of Overage Students - District G
2. Characteristics of Students in Lowest Quartile
3. Calculation of IQ from Stanford Achievement Test Subscores

Overage Students and Students in Lowest Quartile District G, Ninth Grade

Using Student Entry Data and Standardized Test Data
Standardized Testing, Regional Norms, Western Nevada Region
8th Grade: Spring 1969, Spring 1970; 3rd Grade: Spring 1970
Secondary Courses Offered in the WN-REC Region
Predicting Stanford Achievement Scores (National Percentiles)
From Student Marks
Overage Students and Students in Lowest Quartile
Districts A, B, C, D, E, G, 3rd Grade

INTRODUCTION

The pamphlets included in this volume (and the next) axe technical reports prepared by the $W N-R E C$ staff as outgrowths of the development of the Student Information System. The first technical report was the fifth grade pilot study which tested the feasibility of a data collection system and the suftability of certain inforiation items. That report is included with the Student Information System (SIS) System Book (Vol. II of this report). The remaining reports included in this volume and the next (Vol. IV) demo trate the use of the stored data. They appear more or less in inronological order. The reports for the most part deal with methods of interpreting the printouts from the Student Information System - each county is dealt with in order. Other reports describe methods of handling test data for school placement purposes, or methods of approximating IQ's or Standardized Test Scores when either of these are not available.

STUDENT PLACEMENT IN MATHEMATICS BASED ON PREVIOUS ACHIEVEMENT

AN EXAMPLE OF A STEP-WISE MULTIPLE LINEAR REGRESSION

March, 1970

Theodore G. Brough

The Problem:

Sixth grade students (177) in Fellon schools were placed in one of seven levels in their mathematics classes based on thefr fifth grade performance as judged by the fifth grade teacher. Among the variables available to the fifth grade teacher were the following:

1. Arithmetic concepts subscore on Stanford Achievement Test.
2. Arithmetic applications subsiore on Stanford Achievement Test.
3. Arithmetic computations subscore on Stanford Achievement Test.
4. Semester grades for lst and 2nd semester while in fifth grade.

Can a multiple Iinear regression fit be made utilizing the teacher assigned level (for sixth grade) as the dependent variable and the above four variables as independent variables?

Resuits:

The gtep-wise multiple linear regreasion fit was made using the Sigma-7 Computer at the University of Nevada. The accompanying sheets demonstrate the use of the computer program:

1. Statement of required card format.
2. Example of Punching Instructions.
3. Print-outs of steps 1 to 4 in the regression solution along with the correlation matrix and the summary table of the steps in the regression.
4. A list of residuals, on which has been indicated the final best-fit equation utilizing four variables and the equation using only the first, most significant, variable.

Discussion:

Note the following:

1. All of the independent variables are highly correlated with each other as well as with the dependent varidible (5).
2. The highest F ratio elong with the highest degrees of freedom is obtained with the first variable included (2).
3. The multiple correlation factor increeses most with the inclusion of the second vaxiable (1) and increases only minutely with the addition of other variables.
4. By use of a function consisting of one-fourth of the raw score the student achieves on the Stanford Achievement subtest, arithmetic applications, a fairly good fit between level assigned and computed level occurs. (See the List of Residuals table, in which the S5 Ievel, the teacher assigned level, has been listed elong with the predicted Ievel based on $1 / 4 \mathrm{APPI}$. (one-fourth arith appl.)).

IBM EXAMPLE of PUNCHING INSTAVCTIoUS: partan Coding Form
与TEैPュ
fortran statement

Job cAn:
!JOB 904 O0350, wN-REC

ERIC


```
SUB-PRGBLM 1
    DEPENDENT VARIABLE 5
    MAXIMUM NUMBER OF STEPS . 4
    F-LEVEL FEGR INCLUSION
    F-LEVEL FGR DELETION
    .010000
    .005000
    TOLERANCE LEVEL
```

5
4
.010000
.005000
.001000

STEP NUMBER VARIABLE ENTERED: Z

MULTIPLE R STD. ERRGR AF EST.

ANALYSIS EF VARIANCE
REGRESSION
RESIDUAG

SUM GF SQUARES 3748.723 262.273

MEAN SQUARE 3748.723
1.490

VARIABLES IN EQUATIEN
VARIABLE CQEFFICIENT STD. ERRER F TS REMOVE

¢CENSTANT	-00000	$)$		
2	. 25075		. 00500	$2515 \cdot 6187$

STEP NUMBER
VARIABLE ENTERED
1

MULTIFLE R
STD. ERRGR GF EST.
ANALYSIS BF VARIANCE
 RESIDUAL
$D F$
175
-9781
.9956

VARIABLES IN EQUATION
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE.

(CANSTANT	-00000		
1	-15292	01615	8966117
2	-13404	-01299	$106 \cdot 5488$

STEP NUMBER VARIABLE ENTERED

```
MULTIPLE R
*9797
STD. ERRGR OF EST. .9619
```

ANALYSIS GF VARIANEE				
REGRESSIEN	DF	SUM EF SQUARES	MEAN SQUARE	FATIE
RESIDUAL	174	3850.016	1283.339	1387.132

VARIABLES IN EQUATIGN

STEP NUMEER 4
VARIABLE ENTERED 4

MULTIPLE R	.9800
STO. ERROR OF EST.	.9593

ANALYSIS OF VARIANCE

> REGRESSION RESIDUAL

DF	SUM OF SQUARES
4	3851.783
173	\cdot
	159.213

MEAN SQIJARE F RATIO	
962.946	1046.330
.920	

VARIABLES IN EQUATION
VARIABLE COEFFICIENT STD. ERROR F TE REMGVE VARIAQLE

SPECIFIED STEP REACHED

.00000,		
.11649	.01813	41.2614
.10639	.01450	53.1334
.03795	.01328	8.1634
.06607	.04768	1.9200

SUMMARY TABLE

STEP NUMBER

VARIABLE
ENTERED REMOVED

.9668	.9346
.9781	.9568
.9797	.9599
.9800	.9603

```
#
I ABLE
4
RATIO
S.330
VARIABLES NOT IN EQUATIEN
PARTIAL CERR. TOLERANCE F TS ENTER
```

INCREASE IN RSQ
.9346
-0221
.0031
. 0004
f value to ENTER OR REMQVE

NUMBER GF INDEPENDENT VARIABLES INCLUDED

```
\[
2515.6187
\]
89.6117
13.4818
1.9200
```

LIST OF RESIDUALS: $Y=.1165 S_{1}+.1064 S_{2}+.038 S_{3}+.066$

SSNEL

FORTGAN RUN-TIME ERRAR IN '9BCDREAD: CALLED AT LOC XIO46D3'. END OF-FILE ON UNIT 5
$S_{5}=$ Arith Concepts, stanford subseore (Row)
$S_{2}=A_{1 r}+h$ Arplications, stonford Subscore (Aow)
$s_{3}=$ Arith Computations, Stontord Subseore (Aow)
$S_{y}=$ Combined Semester Grodepts. in Arith.
$Y=S_{5}=$ Level of Student Assigument
ERIC- 13

45154
3 \pm $+$ RESIDUAL - 1.32334 1.04850
1.61828
-36120

$$
\begin{array}{ll}
3.25 & 109 \\
4.50 & 110
\end{array}
$$

$$
\begin{array}{ll}
4.50 & 110 \\
4.25 & 111 \\
7.7 & 112
\end{array}
$$

$$
m m_{n}+1
$$. . 07307

$$
\begin{aligned}
& 4.25111 \\
& 2.75112 \\
& 4.75113
\end{aligned}
$$ 1.22823 .48004

.07070

$$
\begin{gathered}
3 \\
1 \\
7 \\
1 \\
7
\end{gathered}
$$ $-.45002$.64211 .72337 -EVELC

$$
\begin{aligned}
& 5 \\
& 3 \\
& 1 \\
& 7
\end{aligned}
$$

OVERAGESTIDENTSAND STUDENTSINLOWESTQUARTILE DISTRICT A, NINTH GRADE

August 4, 1970
Theodore G, Brough

WESTERN NEVADA REGIONAL EDIUCATION CENIER

220 Matn Street

Te1x $x(702) 12732631$

ERIC

INTRODUCTION

This pamphlet introduces the Partial Student Profile, a compoter-based report of data on each student stored in the Western Nevadar Regional Education Centex's Student Information System. By its very nature (a computer printout-one line per student) the Profile is compact and much of the information is coded. Printouts of the complete coded Information as it now exists for each student in the system are even more compact. Samples of this data (called Demonstration Data for discussion purposes) are included in a previous report in this series: Using Student Data From Computer Printouts, WN-REC, May 25, 1970. With a little experience, the codes can be learned and the information extracted for school analysis purposes. A discussion of how the data is handled is given in the above mentioned publication.

Table I sumarizes selected information for students classified according to placement in overage or non-overage groups. Students will be considered overage if their birthdays fall before January 1, 1955. The Table reveals the following trends:

1. An increase in reported learning limitations with increase in age.
2. An increase in proportion of students with a foreign language spoken in the home with increasing age. However, for the oldest age group the trend does not hold (scanty data).
3. An increase in proportion of male parent as either missing, a step-parent or other with increasing age placement.
4. A rapid decrease in student performance on the Stanford Achievement sub-tests indicated with increasing age placement.
5. An increase in proportion of Spanish-American, Indian and Oriental students with increasing age placement. All of the Oriental students (only 2, however), over $3 / 4$ of the Indian students (5 out of 7) and half of the Spanish-American students are in the overage group - over twenty five percent of these students are in the oldest overage group. (Five out of the seven students in the overall group are members of minority groups).
6. With increasing age placement there is an increasing proportion of students with fathers in unskilled and unemployed occupation categories while the proportion decreases for students with

$$
\text { B } \quad 17
$$

fathers in the skilled occupations. Interestingly enough, the proportion of students with fathers in the professional classification increases with increaging overage placement (scanty data):
7. The proportion of girls decreases with increasing age placement.
8. No definitely defineable trends are observable for transportation type. Howevex, a decreasing trend in proportion of home-paid hot Iunch with increasing age placement is apparent along with an increasing proportion of students taking school hot lunch.
In summary: Students who have a tendency to be overage and place lowest
on the Stanford Achievement sub-tests are: those with
learning limitations; those who speak a foreign language
at home; those who are members of minorities; those with
parents missing, stepmor other; those with fathers unskilled
or unemployed; those with hot-lunch not paid for by home;
and those who are boys.

District A, 9th Grade Over-age vs. Non-over-age				
	Percent Overage Over 6 mos. ($\mathrm{N}=7$)	Percent Overage Group $(\mathrm{N} \equiv 19)$	$\begin{gathered} \text { Percent } \\ \text { Total } \\ \text { Population } \\ (\mathrm{N}=51) \\ \hline \end{gathered}$	Percent Non-overage Population $(\mathrm{N}=32)$
Learning Limitations (Yes only)	71.5(5)	$52.7(10)$	49.0(25)	46.9(15)
Foreign Language Spoken at home (Yes only)	28.6(2)	36.8(7)	19.6(10)	9.4(3)
Male Parent: missing, Step parent or other	57.1(4)	31.6(6)	25.5(13)	21.8(7)
Occupation of Male Parent:*				
Professional	14.3 (1)	15.8(3)	5.9 (3)	0 (0)
Self-Employed	28.6 (2)	36.3 (5)	33.3(17)	37.5 (12)
Skilled	14.3 (1)	31.6 (6)	43.2(22)	50.0(16)
Unskilled	28.6 (2)	15.8 (3)	9.8(5)	6.3 (2)
Unemployed	14.3(1)	10.5 (2)	7.9(4)	6.3 (2)
Students:				
Spanish-American	14.3(1)	$21.0(4)$	15.7(8)	22.5(4)
Indian	28.6 (2)	26.3 (5)	13.7 (7)	$6.3(2)$
Oriental	28.6(2)	10.5 (2)	3.9 (2)	0 (0)
Girl Students	42.8 (3)	47.3 (9)	60.8 (31)	68.8(22)
Age (Yrs)	16.1(7)	$15.8(19)$	15.3 (51)	14.9 (32)
Trans. Type:				
Walk or Bike	42.8 (3)	$63.2(12)$	54.9(28)	50.0(16)
Bus or Car	57.2 (4)	36.8(7)	45.1(23)	50.0(16)
Time (min) :				
Overall	25.1(7)	15.6(19)	$16.5(51)$	17.0(32)
Waik or Bike	8.3 (3)	9.1 (12)	8.2(28)	7.5 (16)
Bus or Car	37.5(4)	27.0(7)	26.6(23)	27.5 (16)
Lunch Type:				
School - Hot:	$57.2(4)$	21.1 (4)	17.6.9)	$15.6(5)$
Home Pays:	25.0 (1)	25.0 (1)	55.5 (5)	$80.0(4)$
School - Box:	0 (0)	0 (0)	4.9 (2)	$6.3(2)$
None:	0 (0)	0 (0)	0 (0)	0 (0)
Other:	42.8(3)	$73.9(14)$	$78.5(40)$	78.2(25)
Average Score Stanford				
Sub-test (percentile) :				
Adv. Para Mean	22.0(6)	$30.5(16)$	46.2(46)	54.5(30)
Arith. Comp.	24.5(6)*	19.6 (1.5)	33.5 (44)	40.7 (29)

+When Male Parent is missing, Fenale Parent Occupation is substituted.
*One overage student scored in upper quartile in AR while in lower quaxtile in PA. (Removing this score puts the oldest group AR mean at 9.6)

LOWEST QUARTILE STUDENTS

Table 2 summarizes sslected information for students classffied on the basis of their performance on the Stanford Achievement sub-tests: advanced paragraph meaning (PA) and arithmetic computation (AR). The Table reveals the following trends:

1. An increasing proportion of overage students with decreasing quartile piacement (upper quartile is an exception).
2. An increase in proportion of foreign language spoken at home with decreasing Stanford Test performance.
3. An increase in proportion of students with fathers unskilled and unemployed with decreasing performance and a decrease in proportion of students with professional fathers with decreasing performance. (See previous trend of increasing overage placew ment with increasing proportion of professional fathers).
4. An increase in proportion of Indian students with decreasing placement.
5. A trend toward increasing proportion of Spanish-American students with decreasing placement (not complete).
6. An increase in proportion of students with school hot-lunch with decreasing placement.
7. A decrease in proportion of students with lunch-other with decreasing placement.
8. No definite trents are observable linking transportation method or time to school with performance.

Table 2
District A, 9 th Grade
Lowest Quartile Students vs. Others

	$\begin{gathered} \text { Percent } \\ \text { Lower } \\ \text { Quartile } \\ \text { Group } \\ (\mathrm{N}=27)^{*} \end{gathered}$	Percent Total Population ($\mathrm{N}=51$)	$\begin{gathered} \text { Percent } \\ \text { Middle } \\ \text { Quartile } \\ \text { Group } \\ (N=18) * \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { Upper } \\ 3 / 4 \\ \text { Group } \\ (\mathrm{N}=24) \\ \hline \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { Upper } \\ 1 / 4 \\ \text { Group } \\ (\mathrm{N}=7)^{\prime} \\ \hline \end{gathered}$
Learning Limitations (Yes only)	48.1 (1.3)	49.0 (25)	38.8 (7)	50.0(12)	85.6 (6)
Overage	48.1(13)	37.3 (19)	27.8(5)	25.0(6)	28.6 (2)
UP_{p} to 6 mos .	29.6(8)	23.5(12)	16.7 (3)	16.7(4)	14.3(1)
6 to 12 mos.	18.5 (5)	13.7(7)	11.1.(2)	8.3(2)	14.3(1)
Foreign Language					
Spoken at Home (Yes only)	22.2(6)	19.6(10)	$16.7(3)$	16.7(4)	28.6 (2)
Male Parent: missing,					
Step or Other	22.2(6)	25.5(13)	27.8(5)	$29.2(7)$	$42.9(3)$
Occupation of Male Parent:*					
Professional	O(0)	5.9 (3)	11.1(2)	8.3(3)	28.6(2)
Self-Employed	39.6 (8)	33.3 (17)	44.4 (8)	37.5 (9)	14.3 (1)
Skil1ed	44.4 (12)	43.2 (22)	33.3 (6)	42.7(10)	$57.1(4)$
Unski̇lled	14.8(4)	9.8 (5)	5.5 (1)	4.2 (1)	0 (0)
Unemployed	11.1(3)	7.9 (4)	5.5 (1)	4.2(1)	$0(0)$
Students:					
Spanish-American	$22.2(6)$	15.7(8)	5.5 (1)	8.3(2)	14.3 (1)
Indian	18.5 (5)	$13.7(7)$	11.1(2)	8.3 (2)	0 (0)
Oriental	$3.7(1)$	3.9 (2)	5.5(1)	4.2(1)	14.3(1)
Girl Students	55.5(15)	$60.8(31)$	$88.9(16)$	$66.7(16)$	$0(0)$
Age (Yrs)	15.0	$15.3(51)$	14.4 (18)	15.2(24)	15.0(7)
Walk or Bike	55.5(15)	$54.9(28)$	50.0 (9)	$54.2(13)$	71.5 (5)
Bus or Car	44.4(12)	45.1 (23)	$50.0(9)$	$45.8(11)$	28.6(2)
Time (min):					
Overall	17.4(27)	16.5 (51)	15.6(18)	15.5(24)	14.1(7)
Walk or Bike	8.8(15)	8.2(28)	$10.0(9)$	$7.5(13)$	2.8 (5)
Bus or Cax	28.1(12)	26.6(23)	22.4 (9)	25.1(11)	$37.5(2)$
Lunch Type:					
School-Hot	22.3(6)	17.6 (9)	16.7(3)	12.5(3)	0 (9)
Home Pays:	$33.3(2)$	55.5(5)	100.0(3)	$100.0(3)$	$0(0)$
School - Box:	$3.7(1)$	4.9 (2)	$0(0)$	0 (0)	$14.3(1)$
None:	0 (0)	O(0)	$0(0)$	O(0)	0 (0)
Othex:	$74.0(20)$	$78.5(40)$	83.3(15)	$87.5(20)$	$85.7(6)$
Average Score Stanford					
Sub-Test (percentile)					
Adv. Para Mean	36.8(27)	$46.2(46)$	49.0(13)	$59.4(19)$	$70.3(7)$
Arith. Comp.	14.6(25)	$33.5(44)$	$43.2(13)$	56.9(19)	78.1 (7)

+When Male Parent is messing, Female Parent Occupation is substituted.
*1 Person fas scores both in lower quartile and upper quartile, hence
Otal N adds up to 52 , not 51

If students are identified as coming to school from one particular town or part of a given town then a pattern emerges. Organizing the data on the basis of residence and ranking the groups according to the proportion of overage students in each residence area results in the pattern shown in Table 3.

Table 3 shows the following:

1. A rapidly decreasing average performance (on paragraph meaning) for all students as the proportion of overage student increases. There is a partial trend in this direction for overall performances on arithmetic.
2. A rapid increase in the proportion of ethnic students from area to area (towns) with increasing overage proportion.
3. A general increase in the proportion of students placing in the lower quartile on both subtests with increasing proportion of overage students. (Incomplete, in that the trend falls off at the last town).
4. There is no general trend of performance falling off as a function of distance.

This particular residential structure is peculiar. The students who do best live in a ring on the outside edge of town, the students inside the town (close to school) are next in performance. The students living farthest from town do not place in the lowest category of performance. A small group of students living in town place lowest in performance.

試

OVERAGESTUDENTSAND STUDENTSINLONEST QUARTILE DHETRTCT B. MINTH GRADE

August 17,1970
Theodore, GF Brough

WEStern ievada regional fucaticn centir

220 Main Street

P. $0 . \operatorname{Box} 421$

Lovelock, Nevada 89419
Te1 4 (702) $273-2631$

INTRODUCTION

This pamphlet introduces the use of the Partial Student Profile, a computer-based report of data on each student stored in the Western Nevada Regional Educatisn Genter's Student Information System. By its very nature (a computer printout-oone line per student) the Profile is compact and much of the information is coded. Printouts of the complete coded information as it now exists for each student in the system are even more compact. Samples of this data (called Demonstration Data for discussion purposes) are included in a previous report in this series: Using Student Dasa From Computer Printouts, WN-REC, May 25, 1970. With a little experience, the codes can be learned and the information extracted for school analysis purposes. A discussion of how the data is handled to yield tables such as are in this memo is given in the above-mentioned publication.

OVERAGE STUDENTS

Table 1 sumarizes selected information for ninth grade students classified according to placement in overage or non-overage groups. Students will be considered overage if their birthdays fall before December 1, 1954. The Table reveals the following trends:

1. Λ decrease in reported Jearning limisations with increase in age.
2. An increase in proportion of students with a foreign language spoken in the home with increasing age.
3. An increase in proportion of male parent as either missing, a step-parent or other with increasing age placement. This trend falls off in the oldest groups.
4. A rapid decrease in student performance on the Stanford Achievement sub-tests indicated with increasing age placement.
5. A general increase in proportion of Indian students with increasing age placement (incomplete trend). Over half of the Indian students (8 out of 14) are in the overage group. About one-fourth of the Spanish-American students are in the overage group. The overall proportion of students overage is about $25 \%(34 / 142)$.
6. With increasing age placement there is an increasing proportion of students with fathers in skilled and unemployed occupation
categories while the proportion decreaseg for students with fathers in the self-employed occupations. Interestingly enough, the proportion of students with fathers in the professional classification decreases with age category and then increases with increasing overage placement (scanty data).
7. The proportion of girls rapidly decreases with increasing age placement.
8. The time to get to school generally increases with increasing overage placement.
9. An increasing trend in proportion of school-paid hot lunch with increasing age placement is apparent along with a generally decreasing proportion of students taking school hot lunch.

In summary: Students who have a tendency to be overage and place lowest on the Stanford Achievement sub-tests are: those who speak a foreign language at liome; those who are Tndlans; those with parents missing, step- or other; those with fathers skilled or unemployed; those with hot lunch paid for by school; and those who are boys.

Table 1
District $B, 9 t h$ Grade Over-age vs. Non-over-age

	Percent Overage Over 12 mos. ($\mathrm{N}=8$)	Percent Overage Over 6 mos. $(\mathrm{N}=18)$	Percent Overage Group ($\mathrm{N}=34$)	Percent Total Population ($\mathrm{N}=142$)	Percent Non-Overage Population $(N=108)$
Learning Limitations (Yes only)	0 (0)	O(0)	2.9 (1)	$6.4(9)$	$7.4(8)$
Foreign Language Spoken at home (Yes only)	37.5 (3)	22.2 (4)	32.4(11)	16.9(24)	12.0(13)
Lale Parent: missing, Step parent or other	25.0 (2)	27.8(5)	29.4(10)	21.1(30)	18.5(20)
ccupation of Male Parent:+			2.9 (1)	$6.4(9)$	7.5 (8)
Professional	$12.5(1)$ $12.5(1)$	$5.6(1)$ $11.1(2)$	$2.9(1)$ $14.7(5)$	$6.4(9)$ $28.4(40)$	$32.7(35)$
Skilled	62.5 (5)	$61.2(11)$	58.8 (20)	48.9(69)	$45.8(49)$
Unskilled	0 (0)	11.1 (2)	11.8(4)	10.6(15)	10.3(11)
Unemployed	12.5(1)	11.1(2)	11.8(4)	5.7 (8)	3.7 (4)
Students:					
Spanish American	25.0(2)	16.7 (3)	11.8 (4)	12.7(18)	13.0(14)
Indian	25.0 (2)	11.1 (2)	23.5(8)	8.1(14)	$5.6(6)$
Black	O(0)	0 (0)	0 (0)	0.7 (1)	$0.9(1)$
Oriental	0 (0)	0 (0)	0 (0)	0.7 (1)	$0.9(1)$
Other	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Girl Students	12.5(1)	22.2(4)	32.3 (11)	47.1(67)	$51.7(56)$
Age (Yrs)	16.9(8)	16.5 (18)	15.6(34)	15.2(142)	15.0(198)
Trans. Type:					
Walk or Bike	O(0)	5.6 (1)	2.9 (1)	3.5(5)	3.7(4)
Bus or Car	1.00 (8)	77.8 (14)	$67.6(23)$	$57.7(82)$	54.6 (59)
Other	O(0)	16.7(3)	29.4(10)	38.7(55)	41.6(45)
```Trans. Time (min):``` Overall	25.6(8)	21.0(18)	20.5(34)	17.0(142)	16.1 (108)
Walk or Bike	$0(0)$	$0(0)$	30.0 (1)	9.8(5)	4.8 (4)
Bus or Car	25.6	23.2(14)	24.5 (23)	22.6(82)	21.9(59)
Other	O(0)	8.3(3)	11.0(10)	9.6 (55)	9.3(45)
Lunch Type:					
School - Hot:	71.4(5)	50.0(9)	61.8(21)	59.9 (85)	49.2 (64)
School Pays:	40.0 (2)	44.5 (4)	28.1(8)	14.1(12)	6.2 (4)
Home Pays:	60.0 (3)	44.5 (4)	57.2(12)	84.6 (72)	$93.8(60)$
School - Box	0 (0)	0 (0)	O(0)	0 (0)	0 (0)
None:	0 (0)	22.2 (4)	14.7(5)	3.1 (13)	7.4(8)
Other:	28.6(2)	27.8(5)	23.5(8)	30.3 (43)	32.4(35)
Average Score Stanford Sub-test (percentile):					
Adv. Para Mean.	13.5(2)	21.5(8)	31.2(16)	47.8 (95)	51.2(79)
Arith. Comp.	11.0 (2)	18.3 (8)	$35.7(16)$	$46.5(95)$	48.6 (79)

+When Male Parent is missing, Female Parent Occupation is substituted.

Table 2 summarizes selected information for students classified on the basis of their performance on the Stanford Achievement sub-tests: Advanced Paragraph Meaning (PA) and Arithretic Computation (AR). The Table reveals the following trends:

1. An increasing proportion of overage students with decreasing quartile placement (overall average is an exception).
2. A decrease in proportion of foreign language spoken at home with decreasing Stanford Test performance.
3. An increase in proportion of students with fatzers skilled and unskilled with decreasing performance and a general decrease in proportion of students with professional fathers with decreasing perfonsance. (See previous trend of increasing and then decreasing proportion of professional fathers with increasing overage placement).
4. A decrease in proportion of minority students with decreasing placement. (This should be compared with the increasing proportion of Indian students who are overage).
5. An increase in proportion of students witl school hot lunch with decreasing placement.
6. A decrease in proportion of students with lunch-other with decreasing placement.
7. No definite trends are observable linking transportation method or time to school with performance.

Table 2
District B, 9th Grade
Lowest Quartile Students vs. Others

Percent	Percent	Percent	Percent	Percent
Lower	Total	Middle 0	Upper $3 / 4$	Upper $1 / 4$
Group	Population	Group	Group	Group
$(N=39)$	$(N=142)$	$(N \equiv 73) *$	$(N=103)$	$(N=32)$

Learning Limitations
(Yes
Overage
Up to 6 mos. 6 to 12 mos. 12 mos. and over

Forelgn Language Spoken at Home (Yes only)

Male Parent: missing, Step or Other
$7.7(3)$
$30.8(12)$
$10.3(4)$
$17.9(7)$
$2.6(1)$
$6.4(9)$

$8.2(6)$	$5.8(6)$	$0(0)$
$28.8(21)$	$21.4(22)$	$9.4(3)$
$13.7(10)$	$11.7(12)$	$9.4(3)$
$5.5(4)$	$2.9(3)$	$0(0)$
$9.6(7)$	$6.8(7)$	$0(0)$

$10.3(4) \quad 16.9(24) \quad 23.3(17) \quad 19.4(20) \quad 9.4(3)$

Occupation of Male Parent:+ Professional.
Self-Employed
Skilled
Unskilled Unemployed

Students:
Spanish-American
Indian
Black
Oriental
Giri Students
Age (Yrs)
Transportation Type:
Walk or Bike Bus or Car Other
Time (min): Overali Walk or Bike Bus of Car Other
Lunch Type: School - Hot Home Pays: School. Pays: Schoot - Box: None: Other:
$5.1(2)$
$2.6(1)$
$0(0)$
$0(0)$
$38.5(15)$
$15.3(39)$
$12.7(18)$
$8.1(14)$
$0.7(1)$
$0.7(1)$
$47.1(67)$
$15.2(142)$
2.6(1)
$53.9(21)$
$43.6(17)$
18.6(39)
30.0 (1)
25.8(21)
8.5(17)
$61.7(26)$
92.4(24)
$3.8(1)$ 0 (0)
$10.5(4)$
23.1(9)
$59.9(85)$
$84.7(72)$
$14.1(12)$
$9(0)$
$3.1(13)$
$30.3(43)$
$58.9(43)$


Average Score Stanford
Sub-Test (percentile) Adv. Para Mean Axith Comp.

$$
36.8(39)
$$

20.8(39)
$47.8(95)$
48.7(26) 62.4(56)
75.7(32)
$46.5(95)$
$49.6(26)$
$64.2(56)$
$75.3(32)$
*2 Persons have scores both in lower quartile and upper quartile, hence
ICtal N adds up to 73 , not 71 .

If students are identified as coming to school from one particular town or part of a given town then a pattern emerges. Organizing the data on the basis of residence and ranking the groups according to the -time to school from that place of residence results in the pattern shown in Table 3.

Table 3 shows the following:

1. A decreasing average performance (on Arithmetic Computation) for all students as the time to school increases. There is a trend in this direction for overall performances in Paragrapli Meaning, but it does not hold for overage students and students placing in the lowest quartile.
2. A rapid increase in the proportion of ethnic students from area to area (towns) with increasing time to school.
3. A general decrease in the proportion of students placing in the lowest quartile on both sub-tests with increasing time to school. (Incomplete, in that the trend falls off at one middle distance tovn).

$$
\begin{aligned}
& \text { Proportion in Each } \\
& \text { Residence Area*** }
\end{aligned}
$$

Selected Characteristics of th Grade Students by
LO
***Numbers in these two column are percentages within each group.
PA and AR: Average of Stanford Achievement Sub-scores, National percentiles.

$$
22.2(22)
$$

$$
19.2(14
$$

$$
63.2(12)
$$

$$
\underset{\underset{\sim}{e}}{\stackrel{\rightharpoonup}{\bullet}}
$$

$$
0 \quad 1 \quad 1
$$

## $* *$ Percentage of pupils with test scores reported

Total Students in Categories: Indian, Spanish-American, Spanish Surname, Oriental, Other and
those who speak a Foreign Language at Home. IO: Students placing in lower quartile of either subtext

$$
\begin{aligned}
& 16.7(12) \\
& 24.2(8) \\
& 50.0(1)
\end{aligned}
$$

$$
\begin{gathered}
0(0) \\
0(0) \\
50.0(3)
\end{gathered}
$$



# OVERAGE STUDENTS AND STUDENTS IN LOWEST OUARTILE <br> DISTRICT C, NINTH GRADE 

## August 27; 1970

## Theodore G. Brough

## WESTERN NEVADA REGIGNA EDUCATION CENTER

## 220 Main St reet

Lovelock, Nevada -89419

```
Tel, %(702) 2733-2631
```


## INTRODUCTION

This pamphlet introduces the use of the Partial Student Profile, a computer-based report of data on each student stored in the Western Nevada Regional Education Cencer's Student Information System. By its very nature (a computer printout--one line per student) the Profile is compact and much of the information is coded. Printouts of the complete coded information as it now exists for each student in the system are even more compact. Samples of this data (called Demonstration Data for discussion purposes) are included in a previous report in this series: Using Scudent Data From Computer Printouts, WN-REC, May 25, 1970. With a little experience, the codes can be leari ad and the information extracted for school analysis purposes. A discussion of how the data is handled to yield tables such as are in this memo is given in the above-mentioned publication.

## OVERAGE STUDENTS

Table 1 summarizes selecter information for ninth grade students classified according to placement in overage or non-overage groups. Students will be considered overage if their bixthdays fall before December 1, 1954. The Table reveals the following trends:

1. A decrease in reported learning limitations with increase in age.
2. A tendency toward anl increase in the proportion of students with a foreign language spoken at home with increasing age. This trend does not hold for the oldest age groups.
3. A slight trend toward a decrease in the proportion of male parents as either missing, a step-parent ox other with increasing age placement.
4. A rapid decrease in student performance on the Stanford Achievement sub-tests indicated with increasing age placement. This trend does not hold for the oldest average group.
5. A decrease in proportion of Spanish-American students with increasing age placement. The rate of decrease is slightly fastex than for the population as a whole.
6. A slight increase In the proportion of Indian students with increasing age placement. About one-third of the total Indian population is overage (5/16) while about one fourth of the population as a whole is overage (35/139).
7. A rapld increase in the proportion of black students with increasing age placement. One thind of the black students are overage while about half of these overage students are overage by 12 months or more (4/9). Black students account for one-fourth of the total overage students, but total one-half of those that are overage by 12 months or more.
8. The pronortion of girl students decreases with increasing age placement. However, among the younger students (non-overage) the proportion of girls also decreases.
9. The proportion of students with fathers in the self-employed, unskilled, and unemployed categories increases with increasing age placement. This trend falls off for the oldest groups. There is no definite trend among students with skilled fathers (perhaps a slight tendency toward decreasing proportion with age placement). There is a mixed trend for students with professional fathers, perhaps an overall fncrease in proportion with increasing age placement.
10. The time to schonl generxlly decreases with increasing age placement for all categories of school transportation. The proportion of students transported to school increases with increasing age placement (and decreasing achievement score placement).
11. There is a decrease in proportion of students with school-paid hot Iunch and a general increase in proportion of no lunch reported with increasing age placement. There is a general increase in the proportion of school hot lunch reported wth increasing age placement. The proportion of Lunch-other fails off with age placement.

In sumary: Students who have a tendency to be overage and place lowest on the Stanford Achievement Sub-tests are: those who speak \& foreign language at home; those who are either Negroes or Indians (but not Spanish-American or with Spanish Sur-names); those who are boys; those with self-employed, unskilled or unemployed fathers; those who are transported to school (rather than walk or ride bike) but not those who live the farthest; and those who report no lunch.

Table 1
District 8, 9th Grade Overage vs. Non-Overage

	Percent   Overage Over $12 \text { mos. }$ $(N=8)$	Percent   Overage Over   6 mos. $(\mathrm{N}=16)$	Percent Overage Group $(\mathrm{N}=35)$	$\begin{gathered} \text { Percent } \\ \text { Total } \\ \text { Population } \\ (\mathrm{N}=139) * \\ \hline \end{gathered}$	Percent Non-Overage Population ( $\mathrm{N}=102$ )
Learning Limitations (Yes only)	0	6.3(1)	11.4(4)	11.5(16)	11.8(12)
Foreign Language Spoken at home (Yes only)	0	12.5(2)	20.0(7)	11.5(16)	8.8(9)
Male Parent: missing, stepparent or other	25.0(2)	18.8(3)	26.7(9)	28.0(39)	28.4(29)
Occupation of Male Parent: ${ }^{+}$					
Professional	25.0(2)	12.5 (2)	17.1(6)	18.0(25)	17.7(18)
Self-Employed	0	6.3(1)	5.7(2)	$5.0(7)$	4.9 (5)
Skilled	62.5(5)	62.5(10)	60.0 (21)	62.6(87)	64.8(66)
Unskilled	12.5 (1)	18.7(3)	8.6 (3)	7.9(11)	$6.9(7)$
Unemployed	0	0	8.6(3)	5.0 (7)	3.9 (4)
No Response	0	0	0	1.4(2)	2.0 (2)
Students:					
Spanish-American	0	6.3(1)	5.7(2)	9.4(13)	10.8(11)
Indian	12.5(1)	12.5(2)	14.3(5)	$11.5(16)$	10.8 (11)
Black	50.0 (4)	37.5 (6)	25.7(9)	19.4(27)	17.6(18)
Oriental, Other	0	0	0	0	$0$
Girl Students	37.5(3)	37.5(6)	40.0 (14)	49.4(81)*	$47.0(48)$
Age (Yrs.)	17.2(8)	16.6(16)	16.4(35)	15.1(137)	14.7(102)
Trans. Type:					
Walk or Bike	25.2(2)	25.0(4)	28.6(10)	37.7(52)	40.6(41)
Bus, Car or Other	75.0(6)	75.0(12)	71.5(25)	62.3 (86)	59.4 (60)
Trans. Time (min.) :					
Overall	9.5(8)	14.5(16)	15.3(35)	15.8(137)	16.0(101)
Walk or Bike	$5.5(2)$	9.0 (4)	$10.7(10)$	$11.0(52)$	11.1(41)
Bus, Car or Other	$6.5(6)$	16.3(12)	17.2(25)	18.8(86)	19.4 (60)
Lunch Type:					
School - Hot:	37.5(3)	37.5(6)	31.4(11)	25.9(36)	24.5(25)
School Pays	0	16.7(1)	27.3(3)	27.8 (10)	28.0(7)
Home Pays	100.0(3)	83.3(5)	63.6 (7)	66.7(24)	68.0(17)
School-Box:	12.5(1)	6.3(1)	2.9 (1)	4.3(6)	4.9 (5)
None:	0	12.5 (2)	8.6 (3)	$5.0(7)$	3.9 (4)
Other:	37.5(3)	37.5(6)	54.3(19)	64.7(90)	66.7 (68)
Average Score Staniord   Subtest (percentile):					
Adv. Para. Mean	28.6(3)	21.5(8)	32.7(24)	39.9 (135)*	41.6(91)
Arith. Comp.	13.3(3)	11.3(8)	22.6(24)	$30.7(135) *$	34.4(90)

* Standardized test scores and sex description were available for 26 additional students. Some students with adequate records had no standardized test scores. 1 than male parent is missing, female parent occupation is substituted.

Table 2 summarizes selected information for students classified on the basis of their performance on the Stanford Achievement sub-tests: Advanced Paragraph Meaning (PA) and Arithmetic Computation (AR). The table reveals the following trends:

1. An increasing proportion of reported learning limitations with decreasing quartile placement.
2. An increasing proportion of overage students with decreasing quartile placement. The trend for the oldest group (12 months and more overage) is somewhat the reverse of this.
3. The proportion of foreign language spoken in the home remains virtually constant with decreasing quartile placement. There is a slightly increasing trend with decreasing quartile placement.
4. The proportion of male parents in the categories missing, step-parent or other decreases with decreasing placement.
5. The proportion of male parents in the unskilled category decreases with decreasing quartile placement (scanty data). The trend for proportion of professional fathers is mixed, but slightly toward a decrease with decreasing placement. The proportion of self-employed and skilled fathers is virtually unchanged with decreasing quartile achievement.
6. An increase in proportion of minority students with decreasing placement.
7. The proportion of Spanish-American students remains somewhat constant with decreasing placement (slight increase).
8. A decreasing proportion of Indian students with decreasing quartile placement (this trend falls off for the highest quartile group).
9. A rapid increase in the proportion of Black students with decreasing quartile placement.
10. Over two thirds (19/27) of the black students place in the lowest quartile, while $54 \%$ of the Spanish-American students and $37.5 \%$ of the Indian students place in the lowest quartile. These figures are to be compared with the $48 \%$ of the total population that place in the lowest quartile (67/139). It should be observed that $48 \%$ (35/73) of those students that are not members of racial minorities place in the lowest quartile.
11. The proportion of girl students fluctuates with decreasing quartile placement, generally increasing. The proportion of girls in each of the quartile placement categories exceeds that of boys. Only in their proportion of the total population is the ratio near $50 \%$. of the 29 students with missing standardized test scores, 17 (58.6\%) are boys. Hence the imbalance is probably caused by this imbalance of about $5 \%$ of the boys being missing from each quartile category.
12. There is a tendency for the proportion of students getting to school by walking or riding bike to increase with decreasing quartile placement. However, this trend is reversed for the highest quartile placement. Overall, when comparing highest quartile with lowest quartile placement, the trend is toward lower proportions of students walking or riding bike to school.
13. When examining distance to school (in minutes) there is no definite, observable trend. Only when comparing the upper quartile group with the lower quartile group is there a trend toward longer time to school with lower placement. In all other cases the trends are mixed.
14. There is a strong increase in the proportion of school-paid hot-lunch with decreasing quartile placement. There is also an increase in proportion of school box-lunch with decreasing quartile placement (scanty data). All other trends are either mixed or the proportions are unchanging with quartile placement.

One interesting observation concerns the achievement of students in the middle quartiles. By isolating the 81 students who placed in the lowest quartile and the 21 students who placed in the highest quartile, we are left with 34 students who placed in the middle two quartiles. Although only $25 \%$ of the total population placed in the middle two quartiles (34/135), their performance on the two subtests approached the national norm. It would be interesting to see, on another measurement, if the total population of students in this county were in fact non-homogeneous. That is, to see if the population was truly skewed to the left (lower quartile) in ability. The middle quartiles group seems to be normally distributed.

Table 2
District C, 9 th Grade
Lowest Quartile Students vs.
Others

Percent	Percent	Percent	Percent	Percent
Lower Q	Total	Middle	Upper 3/4	Upper 1/4
	Population	Q Groups	Group	Group
$(N=67)$	$(N=139)$	$(N=55) *$	$(N=72)$	$(N=18)$


Learning Limitations (Yes only)	14.9(10)	11.5(16)	9.1 (5)	8.3(6)	5.6(1)
Overage:					
Up to 6 mos ,	16.4(11)	13.7(19)	10.9(6)	11.1(8)	11.1(2)
6 to 12 mos.	7.5(5)	5.8(8)	5.5(3)	4.2(3)	0
12 mos. and over	3.0(2)	5.8(8)	10.9(6)	8,3(6)	0
Foreign Language Spoken at Home (Yes)	11.9 (8)	11.5(16)	10.9(6)	11.1(8)	11.1(2)
Male Parent:					
Missing, step=, or other	23.9(16)	28.0(39)	31.0(17)	32.0(23)	33.3(6)
Occupation of Male Parent: +					
Professional	19.4(13)	18.0(25)	14.5(8)	16.7(12)	22.2 (4)
Self-Employed	$6.0(4)$	5.0(7)	5.5(3)	4.2(3)	5.6 (1)
Skilled	61.2(41)	62.6(87)	$65.5(36)$	63.9(46)	55.5 (10)
Unskilled	6.0 (4)	7.9 (11)	9.1(5)	9.7(7)	11.1(2)
Unemployed	$7.5(5)$	5.0 (7)	1.8(1)	2.8(2)	5.6(1)
Students:					
Spanish-American	10.4(7)	9.4(13)	7.3(4)	8.3(6)	16.7(3)
Indian	9.0 (6)	11.5(16)	14.5(8)	13.9(10)	11.1 (2)
Black	28.4(19)	19.4(27)	12.7(7)	11.1(8)	5.6(1)
Oriental, Other	0	0	0	0	0
Girl Students**	59.8(40)	49.4(81)**	58.2(32)	57.0(41)	55.5(10)
Trans. Type:					
Waik or Bike	41.8(28)	37.4(52)	29.1(16)	33.4(24)	44.4(8)
Bus, Car and Other	56.8(38)	61.2(85)	69.0 (38)	65.4 (47)	55.6(10)
Trans. Time (Min.) :					
Overall	15.7(66)	15.8(137)	17.4(54)	16.2(71)	14.3(18)
Walk or Bike	11.2(28)	11.0 (52)	10.6(16)	10.7(24)	11.1 (8)
Bus, Car, and Other	18.9(38)	18.8(85)	20.3(38)	19.0(47)	16.8(10)
Lunch Type:					
School - Hot:	20.9(14)	25.9(36)	34.6(19)	30.6(22)	16.7(3)
School Pays	$35.7(5)$	27.8(10)	26.3 (5)	22.8(5)	0
Home Pays	50.0(7)	66.7(24)	73.7(14)	77.2(17)	100.0(3)
School - Box:	6.0 (4)	$4.3(6)$	3.6 (2)	2.8(2)	0
None:	4.5(3)	$5.0(7)$	5.5 (3)	5.6(4)	11.1(2)
Other:	67.2(45)	64.7(90)	58.3(32)	62.5(45)	72.3(13)
Average Score Stanford					
Subtest (percentile):					
Adv. Paxa. Mean. Arith. Comp.	$25.0(81) * *$ $15.6(81)$	$39.9(1.35) * *$ $30.7(135)$	$46.0(34)$ $47.2(34)$	62.4(54)** $53.5(54)$	$\begin{aligned} & 86.0(21) * * \\ & 61.2(21) \end{aligned}$

*One person had scores in both lower and upper quartiles; hence, total $N$ adds up to 55, not 54.
**Standardized test scores and sex description were available for 26 additional students.
Some students with adequate records had no standardized test scores.

If students are identified as coming to schocl from one particular town or part of a given town then a pattern emerges. Organfzing the data on the basis of residence and ranking the groups according to the time to school from that place of residence results in the pattern shown in Table 3.

Table 3 shows the following:

1. There is a general tendency toward decreasing overall average performance on the standardized test scores recorded with time to town. This tendency does not hold up for the last two outlying towns for Paragraph Meaning and for the next to last town for Arithmetic Computation. These trends more or less hold up for the other categories of students: Overage and Lower Quartile for these test scores.
2. There is a general tendency toward an increase in proportion of students falling in the Lower Quartile with increasing time to school. Again, this tendency falls off for the students in the farthest outlying towns.
3. No definite trends concerning proportion of ethnics as a function of time to school. The ethnics in this county axe concentrated in two residential areas, hence any other trends of ethnicity as a function of distance in the county as a whole are masked.
4. There is a trend toward an increase in proportion of overage students with increasing time to school. This is a not a smooth trend and is barely detectable from an overall view of the population (from closest in to farthest out).
5. There is a trend toward an increase in proportion of students placing in the lowest quartile with increasing time to school. This trend falls off for the students in towns farthest out.

$\begin{array}{c}\text { Proportion } \\ \text { of } \\ \text { Ethnics }\end{array}$
$29.6(16)$
$63.6(21)$
$42.1(8)$
$12.5(1)$
$87.5(14)$
$25.0(1)$
:---
$\begin{array}{lll}\text { A11 } & \text { Overage } & \text { LO } \\ 36.1(46) & 25.3(7) & 17.5(25) \\ 33.5(26) & 24.2(8) & 16.8(16) \\ 28.0(17) & 15.0(4) & 20.9(12) \\ 22.9(8) & 21.3(3) & 10.5(6) \\ 32.8(12) & 24.7(3) & 15.0(7) \\ 22.0(2) & - & 18.0(1)\end{array}$
:---:
District $C$
Selected Characteristics of 9 th Grade Students by
Time From School

$32.7(54)$
$20.0(33)$
$11.5(19)$
$5.5(9)$
$9.7(16)$
$2.3(4)$



[^0]+ Proportion of pupils in each town of the sum of the students in the categories: Indian, Spanish-American, Spanish surname, and those who speak a foreign language at home.
PA and AR: Average of Stanford Achievement Sub-scores, National Percentiles

[^1]
# OVERAGE STUDENTS AND STUDENTS IN LOWEST QUARTILE DISTRICT D, NINTH GRADE 

September 24, 1970
Theodore Ge Brough

I NTRODUCTION

This pamphlet introduces the use of the Partial Student profile, a computer-based report of data on each student stored in the Western Nevada Regional Education Center's Student Informetion System. By its very nature (a computer printout--one line per student) the Profile is compact and much of the information is coded. Printouts of the complete coded information as it now exists for eech student In the system are even more compact. Samples of this deta (called Demonstration Data for discussion purposes) are included in a previous report in this sexies: Using Student Data From Computer Printouts, WN-REC, May 25, 1970. With a little experience, the codes can be learned and the Information extracted for school analysis purposes. A discussion of how the data is handled to yield tables such as are in this memo is given in the abovementioned pubication.

## OVERAGE STUDENTS

Table 1 sunmarizes selected information for minth grade students classified according to placement in overage or non-overage groups. Students will be considered overage if their birthdays fall before December 31, 1954, The Table reveals the following trends:

1. An increase in reported learning limitations with increase in age.
2. No tendency toward an increase or decrease in the proportion of students with a foreign language spoken at home with increasing age.
3. An increase in the proportion of male parents as either missing, a step-parent or other with increasing age placement.
4. A rapid decrease in student performance on the Stanford Achievement sub-tests indicated with increasing age placement.
5. An increase in proportion of Oriental students with inci:easing age placement. (Scanty data).
6. A slight decrease in the proportion of Indian students with increasing age placement. About one-fifth of the total Indian population is overage (4/22), about the same as the overage population as a whole (58/302).
7. An increase in the proportion of black students with increasing age placement. (Scanty Data). One half (1) of the black students (2) are overage, None of these overage students are overage by 12 months or moxe.
8. The proportion of girl students increases slightly with increasing age placement.
9. The proportion of stidents with fathers in the self-employed and skilled categories increases with increasing age placement. This trend falls off for the oldest groups in the skilled category The proportion of students with professional, unskilied and unemployed fathers decreases with increasing age placement.
10. The time to school generally increases with increasing age placement for all categories of school transportation. The proportion of students transported to school increases with increasing age placement (and decreasing achievement score placement).
11. There is a decrease in proportion of students with school-paid hot lunch and with lunch reported as other. There is a general increase In proportion of no lunch reported with increasing age placement. (Scanty data in the overage categories). There is a general increase (with one exception) in the propoxtion of achool hot lunch reported with increasing age placement. The proportion of Lunch-other falls off with age placement.

In summary: Students who have a tendency to be overage and place lowest on the Stanford Achlevement Sub-tests are: those with reported learning limitations; those who are either Blacks or Other (but not Indians, Orientals, Spanish-American or with Spanish Sur-names); those who are boys; those with selfemployed, or skilled fathers; those who are transported to school (rather than walk or ride bilce); and those who report no lunch.

## Table 1



[^2]
## LOWEST QUARTILE STUDENTS

Table 2 summarizes selected information for students classified on the basis of their performance on the Stanford Achievement sub=tests: Advanced Paragraph Meaning (PA) and Arithmetic Computation (AR). The table reveals the following trends:

1. A relatively stable proportion of reported learning limitations with decreasing quartile placement. The proportion increases for both the lower quartile and upper quartile placement categories when compared with the total population.
2. The proportion of students with foreign language spoken in the home decreases with decreasing quartile placement.
3. An increasing proportion of overage students with decreasing quartile placement.
4. The proportion of students wtth male parents in the categories missing, step-parent or other increases silghtly (overall) with decreasing placement. However, the trend from the upper $3 / 4$ placemer. category to the lower quartile category is a general decrease.
5. The proportion of male parents in the professional and unskilled categories decreases with decreasing quartile placement. The trend for proportion of self-employed and unemployed fathers is mixed, but is slightly toward a decrease with decreasing placement. The proportion of students with skilled fathers increases with decreasing quartile placement.
6. An increase in proportion of Spanish-American (scanty data) and Indian placement. About 45 percent of the Indian students (10/22) place in
the lowest quartile, while 27 percent of the students overali (82/302) place in the lowest quartile. Fifty percent of the Spanish-Americais (1/2) place in the lowest quartile.
7. The proportion of Black students decreases with decreasing placement (scanty data).
8. The proportion of girl students decreases with decreasing quartile placement. The proportion of girls fn each of the upper quartile placement category exceeds that of boys. Only in their propoxtion of the total population is the ratio near $50 \%$.
9. There is a tendency for the proportion of students getting to school by walking or riding bike to decrease with decreasing quartile placement. The proportion of students riding bus or car to school and coming to school by other means fluctuates with decreasing quartile placement. The overall trend is toward a decrease with decreasing placement. For Bus ox Car travel, however, there is in general no difference in proportion in each quartile category after the upper quartile.
10. When examining distance to school (in minutes) there is no definite, obeervable trend. Only when comparing the upper quartile group with the lower quartile group is there a trend toward longer time to school with lower placement for all categories except other, which tends toward a decrease. In all other cases the trends are atable or mixed.
11. There is a strong increase in the proportion of school-paid hot-lunch with decreasing quartile placement. There is also a slight increase in the proportion of school box-lunch with decreasing quartile placement. All other trends are either mixed or the proportions are virtually unchanged with decreasing quartile placement.

Table 2
District D, Ninth Grade
Lowest Quartile vs. Others

	Percent Lower Q $(\mathrm{N}=82)$	$\begin{aligned} & \text { Middle } \\ & \text { Quartiles } \\ & \text { (N=132) } \end{aligned}$	Percent Total Pop. $(\mathrm{N}-302) \%$	Percent Upper 3/4 $(\mathrm{N}=220)$	$\begin{gathered} \text { Upper } \\ \text { Quartile } \\ (N=90) \end{gathered}$
Learning Limitatinns (Yes only)	47.6(39)	28.8(38)	38.8(117)	35.4 (78)	44.5(40)
Foreign Language Spoken at home (Yes only)	$3.7(3)$	3.8(5)	5.3(16)	$5.9(13)$	8.9(8)
Overage	28.0(23)	22.0 (29)	19.2(58)	15.9(35)	6.7 (6)
Overage					
6 months and over	$11.0(9)$	6.1 (8)	$5.6(17)$	3.6 (8)	O(0)
Male Parent: missing, step-parent or other	24.4(20)	32.6(43)	27.2(82)	28.2(62)	$20.0(18)$
Occupation of Male Paxent:+					
Professtonal	28.0 (23)	31.1(41)	$31.2(94)$	32.3(71)	33.3 (30)
Self-Employed	13.4(11)	16.7(22)	15.9(48)	16.8 (37)	16.6(15)
Skilled	$48.8(40)$	40.2 (53)	41.7(126)	39.1 (86)	36.6 (33)
Unskilled	7.3 (6)	6.8 (9)	7.6 (23)	$7.7(17)$	10.0 (9)
Unemployed	2.4(2)	$5.3(7)$	3.6 (11)	4.1 (9)	3.3(3)
Students:					
Spanish-American	1.2(1)	$0.7(1)$	0.7 (2)	0.5(1)	O(0)
Indian	$12.2(10)$	$6.8(9)$	7.3 (22)	5.5 (12)	3.3 (3)
Blacks	O(0)	$0.7(1)$	$0.7(2)$	0.9 (2)	1.1.1)
Oriental	$0(0)$	$0.7(1)$	0.7 (2)	$0.9(2)$	1.1(1)
Other	$0(0)$	O(0)	0(0)	0 (0)	0 (0)
Girls	$41.5(34)$	$47.0(62)$	$47.7(144)$	50.0 (.110)	53.4 (48)
Age (yrs.)	15.2(82)	14.9(132)	15.1(302)	14.9 (220)	.14.9(90)
Transportation Type:					
Walk or Bike	39.0(32)	43.9 (58)	43.0(130)	44.6(98)	45.5(41)
Bus or Car	43.8 (40)	52.3 (69)	49.4 (149)	49.5 (109)	$44.5(40)$
Other	12. 2 (10)	3.8 (5)	7.6 (23)	$5.9(13)$	10.0(9)
Transportation Time (min)					
Overall	12.5(82)	14.3(132)	12.9(302)	13.1(220)	11.3(90)
Walk or Bike	11.5(32)	$11.5(58)$	$11.2(130)$	11.1 (98)	$10.7(41)$
Bus or Car	14.5 (40)	16.4 (69)	14.9(149)	15.1 (109)	$12.7(40)$
Other	7.7(10)	7.8(5)	8.4(23)	$9.0(13)$	$8.5(9)$
Lunch Type:					
School=Hot.	$9.8(8)$	13.6(18)	11.3(34)	11.8(26)	8.9 (8)
School Pays	25.0(2)	16.7(3)	17.6(6)	15.4(4)	$12.5(1)$
Home Pays	75.0 (6)	83.3(15)	82.4(28)	84.6(22)	87.5 (7)
School-Box	30.5 (25)	25.8(34)	28.8(87)	28.2 (62)	33.3(30)
None	4.9 (4)	4.6 (6)	4.1 (14)	4.6 (10)	4.5 (4)
Other	54.9 (45)	51.5(68)	53.3 (161)	$52.7(116)$	$53.3(48)$
Average Stanford Ach.					
Adv. Paragraph Mean (PA)	27.4(82)	46.8 (59)	51.2(229)	65.1(147)	$78.5(90)$
Arith. Comp. (AR)	16.5 (82)	45.5(59)	48.1(229)	$65.7(147)$	77.7 (90)

ERIC hens have scores in both the lower quartile and upper quartile, hence the $N$
+When Male Parent is missing, Female Parent Occupation is substituted.

If students are identified as coming to school by various means of transportation, subdivided by time involved, then a pattern emerges. Organizing the data on the basis of method of travel and ranking the groups according to the time to gchool by that method (a function of the place of residence) results in the pattern shown in Table 3 .

Table 3 shows the following:

1. There is a general tendency toward decreasing overall average perfoimance on the standardized test scores recorded with time to town. This tendency does not hold up for the students bussed the furthest in the Paragraph Meaning measure, where a slight increase in average occurs. These trends more or less hold up (with some varlations) for other categories of students: Overage and Lower Quartile in the Paragraph Meaning measure. For the categories Overage and Lower Quartile in the Arithmetic Computation (AR) measure thes trends do not hold.
2. There is a partial tendency toward an increase in proportion of gtudents falling in the Lower Quartile with increasing time to school. This tendency falls off for the etudents transported by car or bus.
3. There is no definite trend relating proportion of overage students with increasing time to school.
4. There is a tendency for the proportion of ethnics to increase with Increasing time to school for each method of transportation (except walk or bike). There is no ovexall trend toward incxeasing ethnicity with increasing time to school. Howevex, the propoxtion of ethnic students fluctuates in stxict acoordance with the overage Lower

Quartile average scores for Arithmetic Computation (AR). This may indicate a true reiationship between ethnicity (including foreign language spoken in the home) and placement on this Stanford Achievement Sub-test.

Selected Characteristics of 9 th Grade Students by
Transportation Method and Time to School
5. 56

PA and AR: Average of Stanford Achievement Sub-scores, National Percentiles

# OVERAGE STUDENTS AND STUDENTS IN LOWEST QUARTILE 

## DISTRICT E, NINTH GRADE

September 30,1970
Theodore G. Brough

WESTERN NEVADA REGIONAL EDUCATION CENTER
220 Main Street
P. O. BOK 421

Lovelock, Nevada, 89419
Te1. (702) 273-2631

## INTRODUCTION

This pamphlet introduces the use of the Partial Student Profile, a computer-based report of data on each student stored in the Western Nevada Regional Education Center's Student Information System, By its very nature (a computer printout-one line per student) the Profile is compact and much of the information is coded. Printouts of the complete coded Information as it now exists for each student in the system are even more compact. Samples of this data (called Denonstration Data for discussion purposes) are included in a previous report in this sexies: Using Student Data From Computer Printouts, WN-REC, May 25, 1970. With a 1ittle experfence, the codes can be learned and the information extracted for school analysis purposes. A discussion of how the data is handled to yield tables such as are in this memo is given in the above-mentioned publication.

Table 1 sumarizes selected information for Ninth Grade students classified according to placement in overage or non-overage groups. Students will be considexed overage if thetr birthdays fall before January 1, 1955. The Table reveals the following trends:

1. An increase in reported leaming limitations with inerease in age.
2. An increase in proportion of students with a foreign language spoken in the home with increasing age.
3. A slight increase in proportion of male parent as either missing, a step-parent ox other with tncreasing age placement. This trend falls off in the oldest group.
4. A rapta decrease in student performance on the stanford Achiewement sub-tests indicated with increasing age placement.
5. A general increase in proportion of Indian students with increasing age placement. About half of the Indian students (4 out of 9) are in the overage group. One-third of the Spanish-American students are in the overage group. The overall proportion of students overage is $23 \%(46 / 199)$.
6. With increasing age placement there is an increasing proportion of students with fathers in unskilled and unemployed occupation categories, while the proportion generally decreases for students with fathers in the self-employed occupations. Interestingly
enough, the proportion of students with fathers in the professional classification increases with age category and then decreases with increasing overage placement (scanty data). The proportion of students with fathers tu chelskilled labor category tends toward a decrease with increasipg age placement (with some fluctuations).
7. The proportion of girls decreases with increasing age placement.
8. The time to get to school generally increases with increasing overage placement. This effect is evident for those who ride car or bus to school. However, the time to school for students who walk ox ride bike is almost constant (silght decrease). For those who come to school by the method Other, there is a rapid decrease in proportion with increasing overage placement.
9. An increasing trend in proportion of school-paid hot lunch with increasing age placement is apparent along with a generally decreasing proportion of students taking achool hot lunch. An increasing proportion of atudents with lunch other with increasing age placement is apparent.

In summary: Students who have a tendency to be overage and place lowest on the Stanford Achievement sub-tests are: those who have a learning disability; those who speak a foreign language at home; those who axe Indians; those with parents misaing, step- or other; those with fathers unskilled or unemployed; those who ride car or bus to school; those with hot lunch paid for by school; and those who are boys.

District E, 9th Grade Over-age vs. Non-Over-age

	Percent Overage Over 6 Mos. ( $\mathrm{N}=15$ )	Pexcent Overage Group ( $\mathrm{N}=46$ )	Percent Tota1   Population ( $\mathrm{N}=199$ )	Percent Non-Overage Population ( $\mathrm{N}=153$ )
Learning Limitations (Yes only)	20.0(3)	13.0(6)	12.6(25)	12.4(19)
Foreign Language Spoken at home (Yes only)	40.0(6)	17.4(8)	13.6(27)	12.4(19)
Male Parent: missing, step-, or other	20.0(3)	23.9(11)	23.6(47)	23.5(36)
Occupation of Male Parent: ${ }^{+}$				
Professional	6.7 (1)	10.9(5)	10.0(20)	9.8(15)
Self-employed	26.6 (4)	15.2 (7)	27.6(55)	31.4 (48)
Skilled	46.7 (7)	50.0(23)	43.2 (96)	47.7(73)
Unskilled	6.7 (1)	8.7 (4)	6.5 (13)	5.9 (9)
Unemployed	13.3(2)	13.0(6)	6.0 (12)	3.9 (6)
Stadents:				
Spanish-American	O(0)	4.3(2)	3.0(6)	2.6(4)
Indian	13.3(2)	8.7(4)	4.5(9)	3.3(5)
Black	0 (0)	0 (0)	0(0)	0(0)
Oriental	$0(0)$	O(0)	0.5 (1)	0.7(1)
Other	O(0)	0(0)	2.5(5)	3.3(5)
Gir1 Students	33.5(5)	50.0(23)	$51.7(103)$	52.3(80)
Transportation Type:				
Walk or Bike	13.3 (2)	17.4(8)	15.6(31)	15.0(23)
Bus or Car	86.7 (13)	78.3(36)	76.4(152)	73.2(116)
Other	0 (0)	4.3 (2)	7.5(15)	8.5(13)
Transportation Time (min.) :				
Overall	26.9(15)	24.4(46)	23.1(198)	22.8(152)
Walk or Bike	10.0(2)	11.0 (8)	11.6 (31)	11.8(23)
Bus or Car	29.5(13)	28.5(36)	26.4.(152)	25.8(116)
Other	O(0)	3.5(2)	13.8(15)	15.4(13)
Lunch Type:				
School Hot	13.3(2)	13.0(6)	16.1 (32)	17.0(26)
School Pays	O(0)	16.7(1)	9.4(3)	7.7 (2)
Home Pays	100.0(2)	$66.7(4)$	84.4(27)	88.5(23)
School -- Box	0 (0)	$0(0)$	$1.0(2)$	$1.3(2)$
None	0 0(0)	4.3(2)	6.0(12)	6.5(10)
Other	86.7(13)	82.6(38)	75.4(150)	73.2(112)
Average Score Stanford   Sub-test (percentile):				
Adv. Para. Mean. (PA)	25.6(13)	31.4(41)	46.1 (181)	50.5(1.40)
Arith. Comp. (AR)	7.2(13)	14.0(41)	27.2(181)	31.1 (140)

[^3]Table 2 summarizes selected information for students classified on the basis of their performance on the Stanford Achievement sub-tests: Advanced Paragraph Meaning (PA) and Arithmetic Computation (AR). The Table reveals the following trends:

1. An increasing proportion of overage students with decreasing quartile placement (overall average is an except:~n).
2. A decrease ln proportion of foreign language spoken at home with decreasing Stanford Test performance.
3. An increase in proportion of students with male parents in the categories Missing, Step- or Other with decreasing quartile placement.
4. An increase in proportion of students with fathers skilled and unskilled with decreasing performance and a general decrease in proportion of students with professional and self-employed fathers with decreasing performance. The proportion of students with skilled fathers also increases at the upper $3 / 4$ and upper 1/4 end of the scale.
5. A decrease in proportion of Spanish-American, Oriental (scanty data) and Other students with decreasing quartile placement. However, the proportion of Indian students inereases with decreasing quartile placement.

6. A decreasing proportion of girls with decreasing quartile placement. However, in the upper quartiles, there is a decreasing proportion of girls with increasing quartile placement.
7. An increase in travel time for students who walk or ride bike and students who ride bus or car with decreasing quartile placement. For those students who are transported by other means, the time to school decreases with decreasing quartile placement and also with increasing quartile placement in the upper quartiles. The overall transportation time remains relatively stable with changing quartile placement.
8. A decrease in proportion of students with school hot lunch with decreasing quartile placement. A trend toward an increase in proportion of school-paid hot lunch with decreasing performance.
9. An increase in proportion of students with Lunch-Other with decreasing placement.

District E, 9th Grade
Lowest Quartile Students vs. Others


* 7 persons had scores in both Lower and Upper Quartiles, hence total $N$ adds up to 60 , not 53 .

If students are identified as coming to school from one particular town or part of a given town, then a pattern emerges. Organizing the data on the basis of residence and ranking the groups accocding to the time to school from that place of residence resulta in the pattern shown in Table 3.

Table 3 shows the following:

1. A decreasing average overall performance for most students as the time to school increases. This trend holds overall, although thexe are some fluctuations at the middle distances (times). This trend holds true genexally for the Lower Quartile students but not for the Overage students.
2. A general increase in the proporiton of ethnic students from area to area (towns) with increasing time to school. There are some exceptions at the middle distance (time) towns.
3. A trend toward an increase in proportion of overage students in each area with increasing time to school. There are some finctuations in the middle distance (time) towns.
4. A trend toward an increase in proportion of Lower Quartile studenta in each area with increasing time to school.

Each of these overall trends are interrupted by the performance of students who come from residence areas $A_{4}, B$, and $C$. The performance
.7
of the students in these areas drops well beiow the performance of the students in the areas closer in (Ride 34 minutes or less or Walk 19 minutes or less) and of the students in the next furthest area (Ride 35 minutes or more). The data for the students in these three residence areas is scanty ( 10 students altogether). One interpretation would be that these students come from socio-economic areas that are different from the central town and its surroundings. Further investigation is in order.


# OVERAGESTUDENTSAND <br> STUDENTSINLOWEST QUARTILE <br> DISTRICT F. THIRD, EIGHTH, NINTH GRADES 

September 15, 1970
Theodore G. Brough

WESTERN NEVADA REGIONAL. EDUCATION CENTER

220 Main Street
PF O. Box 421
Lovellock, Nevada 89419

$$
\text { Tel. }(702), 273-2631
$$

## INTRODUCTION

This pamphlet introduces the Partial Student Profile, a computer-based report of data on each student stored in the Western Nevada Regional Education Center's Student Information Systex. By its very nature (a computer printout-one line per student) the Profile is compact and much of the information is coded. Printouts of the complete coded information as it now exists for each student in the system are even more compact. Samples of this data (called Demonstration Data for discussion purposes) are included in a previous report in this series: Using Student Data From Computer Printouts, WN-REC, May 25, 1970. With a little experience, the codes can be learned and the information extracted for school analysis purposes. A discussion of how the data is handied to yields tables such as are in this memo is given in the above-mentioned publication.

For this particular county, a sampling from the available data for third, elghth, and ninth grade students was used. The gre definition of overage, lower quartile, and upper quartile was used for each set of studenta. The resulting data is reported for the students as a sirgle group.

Table 1 summarizes selected information for the students selected (third, eighth and ninth grade), classified according to placement in overage or non-overage groups. Students will be considered overage if their birthdays fall before January 1, 1955 (for ninth graders), before January 1, 1956 (for eighth graders), and before January 1, 1961 (for third graders). The table reveals the following trends:

1. An increase in proportion of students with reported leaming Iimitations with increase in age.
2. A decrease in proportion of students with a foreign language spoken at home with increasing age. (Scanty data).
3. A decrease in proportion of students with male parents as efther missing, a step-parent or other with increasing age placement.
4. A decrease in proportion of fathers in the professional, selfemployed, unskilled and unemployed categories with increasing age (scanty data in some categories). However, there is a rapid increase in proportion of fathers in the skilled occupation categories with increasing age placement.
5. A decrease in proportion of minority students with increasing age placement (scanty data).
6. A decrease in proportion of girls with increasing age placement.
7. The time to school decreases with increasing age placement for all transportation methods combined and for those who walk or ride a bike. No such trend exists for the other two categories - Bus or Car and Other.
8. An increase in proportion of students having lunch in the category other with increasing age placement. However, gince only one person reports lunch in another category (none) the data reveals no real trend.
9. A decrease in student performance on the Stanford Achievenent sub-tests Indicated with increasing age placement.

In sumary: Students who have a tendency to be overage and place lowest on the Stanford Achievement Sub-Tests are: those with learning limitations, those with fathers in the skilled occupation category, and those who are boys.

Table 1
District F, 3rd, 8th, 9 th Grade Overage vs. Non-Overage

	Percent	
Percent   Overage   $(N=3)$	Total	Percent
	Population	Non-Overage


Learning Limitations	33.3(1)	19.1(4)	16.7(3)
Foreign Language Spoken at Home	0 (0)	4.8(1)	5.6 (1)
Male Parent: missing, stepparent or other	33.3(1)	52.4 (11)	55.6(10)
Occupation of Male Parent:			
Professional	0 (0)	9.5(2)	11.1(2)
Self-Employed	33.3(1)	42.9 (9)	44.4(8)
Skilled	66.7(2)	33.4 (7)	27.8(5)
Unskilled	0 (0)	9.5 (2)	11.1(2)
Unemployed	O(0)	4.8(1)	5.6(1)
Students:			
White	100.0(3)	$95.2(20)$	94.5(17)
Minority	0 (0)	4.8(1)	5.5 (1)
Girls	0 (0)	52.4(11)	61.1(11)
Transportation Type:			
Walk or Bike	$66.7(2)$	52.4(11)	50.0(9)
Bus or Car	0 (0)	38.1 (8)	44.4 (8)
Other	33.3(1)	9.5(2)	$5.5(1)$
Transportation Time (min.) :			
Overall	7.0 (3)	8.1(21)	8.4(18)
Walk or Bike	5.5 (2)	5.8(11)	5.9(2)
Bus or Car	0 (0)	9.6 (8)	0 (0)
Other	10.0(1)	10.0(2)	10.0(2)
Lunch Type:			
School - Hot	0 (0)	$0(0)$	0 (0)
School - Box	0 (0)	O(0)	O(0)
Other	100.0(3)	95.3(20)	94.5(17)
None	O(0)	4.7(1)	5.5(1)
Stanford Scores (average)			
Paragraph Meaning	01(1)	44.2(17)	46.9(16)
Arithmetic Comp.	$01(1)$	42.3(17)	44.8(16)

Table 2 summarizes selected information for students classified on the basis of their performance on the Stanford Achievement Sub-Tests: Paragraph Meaning (PA) and Arithmetic Computation (AR). The table reveals the following trends:

1. A trend toward an increasing proportion of students with learning limitations with decreasing quartile placement.
2. A trend toward a decreasing proportion of students with fathers in the professional (scanty data) and self-employed categories, A trend, toward an increasing proportion of students with fathers in the skilled, unskilled and unemplayed categories. This trend reveals for the upper quartile placements fir skilled occupations. The data for the unskilled and unemployed occupation categories is scanty.
3. A general decrease in proportion of girls with decreasing quartile placement.
4. An increase in proportion of students who walk or ride bike to school with decreasing quartile placement.
5. A decrease in proportion of students who ride bus or car with decreasing placement.
6. A slight decrease in average time to school with decreasing quartile placement. A general trend toward an increase in time to school for those students who walk or ride a bike. There is a slight trend toward an increase in time with decreasing quartile placement for those who ride bus or car.

Table 2
District F, 3rd, 8th, 9th Grade Lowest Quartile Students vs. Others

	Percent Lower Quartile $(\mathrm{N}=7)$	Percent Total Pop. ( $\mathrm{N}=21$ )	$\begin{gathered} \text { Middle } \\ \text { Quartiles } \\ (\mathrm{N}=9) \\ \hline \end{gathered}$	Percent   Upper 3/4 $(N=14)$	Upper   Quartile $(\mathrm{N}=5)$
Learning Limitations	28.6(2)	19.1(4)	22.2(2)	14.3(2)	0 (0)
Foreign Language spoken at Home	O(0)	4.8(1)	11.1(1)	7.1(1)	0 (0)
Overage	14.3(1)	14.3(3)	22.2(2)	14.3(2)	O(0)
Male Parent: missing, stepparent or other	57.1(4)	52.4(11)	44.5(4)	50.0(7)	60.0(3)
Occupation of Male Parent:					
Professional	0 (0)	9.5(2)	22.2(2)	14.3(2)	0 (0)
Self-Employed	28.6(2)	42.9(9)	44.5 (4)	50.0(7)	60.0 (3)
Skilled	42.9 (3)	33.4(7)	22.2 (2)	28.6(4)	40.0(2)
Unskilled	14.3(1)	9.5(2)	11.1(1)	7.1(1)	0 (0)
Unemployed	14.3(1)	4.8(1)	$0(0)$	$0(0)$	0(0)
Students:					
White	100(7)	95.2(20)	88.9 (8)	92.9(13)	100.0(5)
Minority	O(0)	4.8(1)	11.1(1)	7.1(1)	$0(0)$
Girls	42.9(3)	52.4(11)	44.5(4)	57.1(8)	$80.0(4)$
Trans. Type:					
Walk or Bike	71.5(5)	52.4(11)	44.5(4)	42.8(6)	40.0(2)
Bus or Car	28.6(2)	38.1 (8)	33.3 (3)	42.8 (6)	60.0(3)
Other	0(0)	$9.5(2)$	22.2(2)	14.3(2)	$0(0)$
Trans. Time (min.) :					
Overall	7.9 (7)	8.1(21)	8.2(9)	8.3(14)	8.8(5)
Walk or Bike	7.0(5)	5.8(11)	4.7 (4)	4.8(6)	5.0 (2)
Bus or Car	10.0 (2)	9.6 (8)	7.7(3)	9.5(6)	3.3(3)
Other	O(0)	10.0(2)	10.0(2)	10.0(2)	$0(0)$
Lunch Type:					
Schoot - Hot	0(0)	O(0)	O(0)	0 (0)	O(0)
School - Box	0 (0)	0 (0)	0 (0)	0 (0)	0(0)
Other	100.0(7)	95.3(20)	88.9(8)	92.9(13)	100.0(5)
None	0 (0)	4.7 (1)	0 (0)	7.1(1)	0(0)
Stanford Scores (average)					
Paragraph Meaning	23.3(7)	44.2(17)	38.6(5)	58.9(10)	$79.2(5)$
Arith. Comp.	13.4(7)	42.3(17)	50.0(5)	61.5(10)	73.0(5)

If students are identified as coming to school by one means or another (walk, ride in car, ride in bus) then a pattern emerges. One would surmise that students who walk live closer to school than students who ride in a family cax. Students who ride the bus to school should live furthest out. The average time to school figures show this. Organizing the students with regard to the method of transportation to school yields the results shown in Table 3. The Table reveals the following trends:

1. There is a trend toward increasing overall average performance on the standardized sub-tests recorded with increasing time (and distance) to school. This trend does not hold true for the overage students in each mode of transportation (because of lack of test data) or for students who place in the lowest quartile in one or both sub-tests. There is a trend in this direction for the lower quartile students but it is not complete (scanty data).
2. There is a partial trend toward decrease in proportion of students in the lower quartile with increasing time to school (scanty data).
3. There is a trend toward a decrease in the proportion of overage students with increasing time to school (scanty data).
4. There is no definite trend concerning proportion of ethnics as a function of time to school, the data is too scanty. The one ethnic member lives out of town and rides a bus to school.
District F
Salected Characteristics of 3rd, 8th and 9th Grade Students by

* Percentage of total population.
** Percentage of pupils with test scores reported.
*** Numbers in these two columns are percentages within each group.
+ Proportion of pupils in each town who speak a foreign language at home.
PA and AR: Average of Stanford Achlevement Sub-scores, National Percentiles.
All: All students in particular town (or subdivision).
LQ: Students placing in lower quartile of either subtest.
3.76


# USING STUDENT DATA <br> FROM COMPUTER PRINTOUTS <br> THREE EXAMPLES: <br> 1. Characteristics of Overage Students <br> 2. Characteristics of Students in Lowest Quartile <br> 3. Calculation of IG's 2 rom Stanford Achievement Test Subscores 

May 25, 1970
Theodore G. Brough

# USING STUDENT DATA <br> FROM COMPUTER PRINTOUTS <br> THREE EXAMPLES: 

1. Characterigtics of Owerage Students
2. Characteristics of Students In Lowest Quartile
3. Calculation of $I Q^{\text {© }}$ B from Stanford Achievement Test Subscores

May 25, 1970
Theodore G. Brough

WESTERN NEVADA REGIONAL EDUCATION CENTER
220 Main Street
P.O. Box 421

Lovelock, Nevada 89419
Te1. (702) 273-2631


## CONTENTS

## Page

Introduction ..... 1
Characterigtics of Overage Students ..... 5
Characterfatics of Students In Lowest Quartile ..... 11
Calculation of IQ's from Stanford
Achievement Test Subscores ..... 19

$$
\begin{array}{lllllllllll}
I & N & R & O & D & U & C & T & O & N
\end{array}
$$

This pamphlet introduces the Partial Student Profile, a computer-based report of data on each student stored in the Western Nevada Regional Education Center's Student Information System. By its very nature (a computer printout-one line per student) the Profile is compact and much of the information is coded. Printouts of the complete coded information as it now exists for each student in the system are even more compact. Samples of this data (called Demonstration Data for discussion purposes) are included in an appendix to this report. With a little experience, the codes can be learned and the information extracted for school analysis purposes.

USING THE PARTIAL STUDENT PROFILE

The Student Profile lists most of the data submitted for each student. Data not printed on the Student Profile is:

Street or P.O. Box
County of Residence
ZIP Code Entry Data
Date of Filling Out
Father on active Military Duty
Father's Name
Mother's Name
Home Data
Distance Erom School Personal Data

The Student Profile does include the first initial of the Male and Female Parent's last name in order to indicate whether a name is listed. This can also be used as an indication of the name diffexing from the student's last name, See the Appendix for examples of the complete input data.

Two Stanford Achievement Scores have been listed (whea available). These are the percentile standings in Advanced Paragraph Meaning and Arithmetic Computations. These two were chosen because the Paragraph Meaning subscore has the highest correlation with the Otis IQ score and the Arithmetic Computation subscore is the most sensitive of the three mathematics subscores. The rest of the Stanford Achievement Subscores are stored in the Student Information System, both as interpreted scores (Percentile Standing, Grade Equivalence and Stanine) and as Raw Scores. Examples of how these are stored are shown in the Appendix (Demonstration Data). A sample page from the Partial Student Profile, with explanation, is printed on the following pages. Some of the cities have not been decoded--the codes are ifsted in the Student Information System Referonce Guide.



NVIS $\%=$ St sub-test score



Three examples of how this data can be used are discussed below. They are:

1. Characteristics of Overage Students
2. Characteristics of Students in Lowest Quartile of the Two Stanford Achievement Test Subscores
3. Calculation of IQ's From Stanford Achievement Test Subscores

The data for these examples are taken from the pxintout of data for ninth grade students in one county.

## 1. Characteristics of Overage Students

Students in the ninth grade will be considered overage if their birthdates fall before December 1, 1954. That is to say, their age cohort in the ninth grade should have entered school together if their birthdays fall between December 1, 1954 and November 30, 1955. On this basis, the overage students can be easily identified. of the 179 ninth grade students in the county under consideration, 39 are overage. Of these, 22 are overage up to six months (birthdays between June 1 and November 30, 1954). Selected data considered of importance for these overage students is included in the following tables (Tables 1 and 2). (This data is from the 7-page printout for the county--only the first page is included with this discussion as an example). The investigator in this study of overage students considered only male parent relationship and male parent occupation, not female parent relationship and occupation. In cases where a male parent was missing,

Table 1

Ninth Grade Students Overage up to 6 months (Birthdate June 1, 1954 to November 30,1954 ) ( $\mathrm{N}=22$ )



* If Male Parent is missing, Female Parent is substituted (shown in parentheses).

Table 2

Ninth Grade Students fverage 6 months and above (Birthdate before June 1, 1954) ( $\mathrm{N}=17$ )

ETH GRP	SEX	$\begin{gathered} \mathrm{L} \\ \text { (LANG) } \\ \hline \end{gathered}$	mate   PARENT REL*	MALE PaRENT OCC*	$\begin{aligned} & \text { LEARN } \\ & \text { LIM } \end{aligned}$	$\begin{aligned} & \text { STAN } \\ & \text { PA } \end{aligned}$	\% ${ }_{\text {\% }}$
S	F	1	1	3	1	48	26
I	M	2	1	2	1	04	14
W	F	$i$	1	3	2	18	08
W	F	1	1	3	2	12	01
W	M	1	1	2	1	48	06
S	F	2	1	3	2	62	10
W	M	1	1	3	1	14	16
I	F	. 2	1	3	2	18	24
W	F	1	1	3	1	30	12
I	F	1	3	4	1	32	42
W	M	1	1	5	2	30	02
W	F	1.	1	(4)	2	14	14
W	F	1	1	3	2	--	--
W	M	2	1	2	1	--	--
W	M	1	(1)	(5)	2	--	--
W	M	1	1	2	2	-	--
W	F	1	3	3	2	--	--

* If Male Parent is missing, Female Parent is substituted (shown in parentheses).

7
however, he included the corresponding relationship and occupation of the female parent in its place. Some of the data is coded. An explanation of the codes used appears in the previous pages, as well as in the Appendix to this report.

A summary of the characteristics of the average population indicated is done by counting the number of entries for a given code under the data categories considered and converting each to a percentage. The results for the two groups of overage students are indicated in Table 3. These results can be compared with those for the group of 179 students overall and for the portion of the group (140) that are not overage. These results are also indicated in the table.

Note the following in Table 3:

1. Overage students perform well below the overall average (local or national) or the average of the non-overage. The more overage the student group, the lower the average performance.
2. The overall performance on the Arithmetic Computatior

Subtest is below the national norm. The group overage up to six months performs a little below the local norms, the group overage six months and above performs well below the mean, local and national norms.
3. The percentage of students with learning limitations is higher among the 6-months-and-over overage group than is the overall percentage. The percentage of students with learning limitations in the non-overage group is somewhat less than the overall percentage.

Table 3
Overage vs. Non-overage

| Percent* <br> Overage <br> up to | Percent* <br> Overage <br> 6 mos. <br> $(N=22)$ | over <br> 6 mos <br> $(N=17)$ | Percent* <br> Total |
| :---: | :---: | :---: | :---: | | Population |
| :---: |
| $(N=179)$ | | Porcent* |
| :---: |
| $33.3(7)$ |

Foreign Language
13.6(3)
23.5(4)
$9.0(16)$
$6.5(9)$
Spoken at home (Yes only)

Male Parent: missing,
$22.7(5)$
17.6(3)
$16.7(30)$
15.7(22) Step parent, or other

Occupation of Male Parent:

Professional	0	0	$11.2(20)$	$14.3(20)$
Self-Employed	$31.8(7)$	$23.5(4)$	$22.9(41)$	$21.4(30)$
Skilled	$54.5(12)$	$53.0(9)$	$56.4(101)$	$57.2(80)$
Unskilled	$4.5(1)$	$11.7(2)$	$3.9(7)$	$2.9(4)$
Unemployed	$9.1(2)$	$29.4(5)$	$5.6(10)$	$4.3(6)$

Students:

Spanish American	$4.5(1)$	$11.8(2)$	$2.2(4)$	$0.7(1)$
Indian	$18.2(4)$	$17.6(3)$	$11.2(20)$	$9.3(13)$
Giti Students	$45.4(10)$	$58.8(10)$	$48.6(87)$	$47.8(67)$
Average Score Stanford				
Sub-test:			5.	
Adv. Para Mean	$35.5(14)$	$27.5(12)$	$53.2(148)$	$57.8(122)$
Arithmetic Computation	$39.1(14)$	$15.4(12)$	$42.9(148)$	$47.3(122)$

* Numbers in parentheses are the number of students in each category

4. Among students, the frequency of foreign language spoken in the home increases as the degree of student overage increases (or vice versa). The increase is by a factor of one-half above the average for the up-to-6-months overage group and by one and one-half (1/2) for the 6 -months-and-over overage group.
5. There is a small fluctuation in the proportion of missing, step-, or other type of male parent among the various groups, but the changes are sma1l.
6. No members of the overage groups come from families with male parent classified as professional.
7. The proportion of students with unemployed fathers increases with degree of overage (five times the average for the oldest group).
8. Three out of the four Spanish-American students in the population sampled are in the overage group, while seven out of the 20 Indians in the population sampled are in the overage group. There is a general tendency (not complete, however) for the proportion of SpanishAmericans and Indians to increase as age of group increases.
9. The number of girls exceeds the number of boys in only the oldest age group. There is a general trend (not complete) for the proportion of girls to increase with age of the group.

Of course, the above example uses only some of the data available either on the Student Profile ox in the stored data. For example, no consideration was taken of school bus data, the lunch
pattern, or school identity within the county. Other standardized test data is available and may be worth considering. A detailed analysis of the students' health pattern, school performance, absentee record, and extra-curricular activity record might be useful. Most of this data has not yet been gathered and stored in the Studenc Information System. It is here that the individual counselor or teacher can use his ingenuity in looking at the available data.

## 2. Characteristics of Students in Lowest Quartile

An examination of the Partial Student Profile reveals that some students are doing extremely poorly in elther or both Stanford Achievement Subtests (Advanced Paragraph Meaning and Arithmetic Computation). A standard practice is to isolate for further study the students who place in the lowest quartile,

Proceeding through the Partial Student Profile for this particular county and recording the students' identity numbers and certain selected data on each student results in the data shown in Table 4. The type of data recorded is the same as that in the previous example, with the exception that the Type of School Lunch (coded) for the student was also considered of importance. In addition, the estimated otis IQ for these students was computed and listed since a frequent question would be, "Are these students achieving within the range of their abilities?" A technique for computing the estimated otis IQ from stanford Achievement Test Subscores will be described in a later section.

Ninth Grade Studente with Stanford Achievement Scores in lowest quartile on either sub-score
$(\mathrm{N}=53)$

$\begin{aligned} & \text { STU. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { ETH } \\ & \text { GRP } \end{aligned}$	SEX	$\begin{gathered} \mathrm{L} \\ (\mathrm{~L} A N G) \end{gathered}$	MALE   PARENT REL*	MALE   Parent OCC*	$\begin{gathered} \text { LEARN } \\ \text { LIM } \\ \hline \end{gathered}$	LuNCH   TYPE	STAN \%		$\begin{gathered} \text { EST } \\ \text { OTIS } \\ \text { IQ } \end{gathered}$
								PA	AR	
2001	W	F	1	1	3	2	4	34	01	94
2301	W	$F$	1	1	3	2	4	01	04	74
2351	W	M.	1	1	2	1	12	32	10	86
2302	W	F	1	1	3	2	4	36	20	91
2003	W	F	1	1	3	1	12	50	18	101
2104	I	M	3	(1)	(3)	1	11	08	11	72
2005	W	M	1	1	3	2	12	12	04	75
2008	I	$\mathrm{M}^{+}$	2	1	2	1	12	04	14	69
2404	W	M	1	1	3	1	2	07	38	82
2252	W	F	1	1	3	1	4	24	18	92
2010	W	F	1	3	3	2	4	36	12	97
2012	W	M	1	1	3	1	4	40	18	88
2453	W	F	1	1	2	2	3	34	10	89
2305	W	$\mathrm{F}^{+}$	1	1	3	2	2	18	08	75
2017	W	$\mathrm{F}^{+}$	1	1	3	1	12	08	01	68
2359	W	$\mathrm{M}^{+}$	1	1	2	2	4	06	46	70
2018	I	M	1	1	3	2	4	11	06	75
2019	S	$\mathrm{F}^{+}$	2	1	3	2	4	18	56	80

* If Male Parent is missing, Female Parent is substituted (shown in parentheses). **Estimated from Stanford Subscores, see discussion for technique.
+ overage up to 6 months
+overage 6 months and over.
OUderage

$$
\begin{equation*}
\text { Table } 4 \text { (Cont.) } \tag{2of3}
\end{equation*}
$$

Students in Lowest Quartile


* If Male Parent is missing, Female Parent is substituted (shown in parentheses). **Estimated from Stanford Subscores, see discussion for technique.
+ Overage up to 6 months
+ overage 6 months and over
Underage

$$
\text { E } \quad 92
$$

Table 4 (Cont.)
(3 of 3 )
Students in Lowest Quartile

$\begin{aligned} & \text { STU. } \\ & \text { NO. } \end{aligned}$	ETH   GRP	SEX	$\begin{gathered} \mathrm{L} \\ \text { (LANG) } \end{gathered}$	MALE   PARENT REL*	$\qquad$	$\begin{gathered} \text { LEARN } \\ \text { LIM } \\ \hline \end{gathered}$	$\begin{aligned} & \text { LUNCH } \\ & \text { TYPE } \end{aligned}$	$\begin{array}{r} \mathrm{SI} \\ \mathrm{PA} \\ \hline \end{array}$	$\begin{aligned} & \% \\ & \text { AR } \end{aligned}$	EST OTIS   IQ
2419	W	F	1	1	3	2	4	64	23	99
2064	W	m	1	1	3	2	12	26	06	91
2065	I	F	2	2	1	1	12	40	20	90
2066	I	M	1	1	3	2	12	76	23	100
2310	W	$\mathrm{M}^{++}$	1	1	3	1	1	14	16	71
2226	I	$\mathrm{F}^{++}$	2	1	3	2	4	18	24	76
2311	W	$\mathrm{F}^{++}$	1	1	3	1	3	30	12	83
2312	W	$\mathrm{F}^{+}$	1	1	2	2	4	05	01	63
2313	W	$\mathrm{F}^{+}$	1	$\cdots 1$	3	2	4	08	04	82
2266	W	M	1	1	3	2	4	69	02	105
2073	W	$M^{++}$	1	1.	5	2	4	30	02	71
2267	$I$	$\mathrm{M}^{+}$	1	1.	3	1	12	58	18	91
2373	W	F	1	1	3	1	4	40	14	95
2269	W	M	1	1	1	2	12	34	10	89
2075	W	F	1	2	2	1	4	10	26	86
2212	W	$\mathrm{F}^{++}$	1	1	(4)	2	4	14	14	70
2076	W	F	1	1	3	2	12	40	01	99

[^4]Counting the number of entries for various codes in various categories for these students and converting the tallies to percentages, we have the data listed in Table 5. In addition, the average perfomance for the students overall and in various categories has been computed.

Note the following in Tabls 5:

1. The performance of students who rank in the lower quartile in one of the Stanford Achievement Subtests is generally also low (but not necessarily lower quartile) in the other subtest. The students place lowest in the Arithmetic Computation Subtest.
2. The low average performance of the lower quartile students is reflected in the average of their Otis IQ*s.
3. The frequency of learning limitations reported varies only slightly from group to group, there being a slight tendency toward fewer learning limitations the lower the placement in the achievement tests.
4. There is a strong trend toward increasing average age of students with lower average achievement.
5. There is a trend of denceasing average placement with increasing proportion of Foreign Language Spoken in the Home.
6. There is a slight decrease in proportion of missing, step=, or foster parents with decreasing performance on the Stanford Achievement Subtests.

Table 5
Lower Quartile Group vs. Others

	Percent   Lower   Quartile Group   ( $\mathrm{N}=53$ )	Percent Overa11 Group ( $\mathrm{N}=179$ )	Percent Non-lower Quartile Group ( $\mathrm{N}=126$ )
Learning Limitations (Yes only)	35.8(19)	38.2 (68)	38.9(49)
Overage	34.0 (18)	21.8(39)	16.7(21)
Stx months or more	18.9(10)	$9.5(17)$	$5.6(7)$
Forelgn Language			
Spoleen at home (Yes only)	11.3(6)	9.0 (16)	7.9 (10)
Male Parent: missing, Step parent, or other	15.1(8)	16.7(30)	17.5(22)
Occupation of Male Parent:			
Professional	5.7 (3)	11.2(20)	13.5(17)
Self-Employed	22.6(12)	22.9(41)	23.0(29)
Skilled	62.3(33)	56.4 (101)	$54.0(68)$
Unskilled	3.8 (2)	3.9(7)	4.0(5)
Unemployed	5.7 (3)	5.6(10)	$5.6(7)$

Students:
Spanish-American
Indian
Girl Students
Average Score Stanford
Sub-test:

Adv. Para Mean	29.5(53)	$53.2(148)$	-**
Arithmetic Computation	15.3(53)	42.9(148)	-**
Average Otis IQ Score	85.5(53)	98.3 (144)	106.3(91)
Lunch Type			
School-Hot	35.8(19)	35.4 (63)	35.2(44)
School-Box	7.5(4)	18.0(32)	22.4(28)
None	$3.8(2)$	$2.3(4)$	1.6 (2)
Cother	$52.9(28)$	44.468	40.7 (51)

7. The proportion of students with male parents in the professions decreases with decreasing performance. The proportion of students with male parents in the skilled occupations increases with decreasing performance. The proportion of students with male parents in the other categories of occupations remains virtually constant, there being a small decrease with decreasing performance for selfemployed and unskilled categories and a slight increase for the unemployed category.
8. There is a strong trend of increasing proportions of Spanish-American, Indian, and Girl students with decreasing performance. Half of the total population of Spanish-American students and nearly half of the total population of Indian Students have performances (on one or both of the Stanford Achievement Subtests) in the lowest quartile. Over one-third of the Girl students also place in the lower quartile.
9. There is a decreasing proportion of students with lunch in the School-Box Lunch category with decreasing achievement. There is a definite increasing trend in proportion of students in None or other Lunch category with decreasing performance. There is a slight increase In the proportion of students in the Hot Lunch category with decreasing performance.
10. There are four children in the Hot Lunch supported program. Fifty percent of the students who have hot lunch paid for by the schools are in the lower quartile pexformance group. Fifty percent of the
students reporting no lunch are in the lower quartile performance group.

The interested reader can isolate students in more than one category while in the lowest quartile and compile an abridged version of Table 4. Fxom this a tally of the characteristics of the students in that table can be made. Of course, other data, such as specific learning ilmitation, absentee rate, grades in various subjects, extracurricular activities, time or distance to school, etc., can be utilized. Some of this information (learning limitation, transportation data) is stored in the Student Information System, and some (semester marks) is being collected. The other data is available only locally. Again, we appeal to the imagination of the administrator, counselor, and teacher in the use of the stored data, as well as other types of information available.

$$
\because \quad 97
$$

3. Calculation of IQ's From Stanford Achievement Test Subscores

High correlations exist between the Otis Quck Scoring Mental Ability Test and the two subtests of the Stanford Achievement Battery: Paragraph Meaning and Language: The correlations for these two subtests and the Otis range between . 70 and .77 for grades 4 to 9 in the Intermediate I, Intermediate II, and Advanced Batteries. For the Primary II Battery the highest correlations between the Otis and the Stanford Subtest exist for Paragraph Meaning and Arithmetic Concepts (correlations range between . 53 and .65). For the Primary I Battexy, the highest correlations with the otis are for the Vocabulary and Arithmetic Subtests (.49 and .57 , respectively).*

Recognizing the high correlations between the otis and the two subscores mentioned, one can compute an approximate otis IQ utilizing these two subscores. The method is given below.

IQ is by definition: ** Mental Age Chronological Age

If we use as Mental Age the student's average grade equivalent for the two Stanford Achievement Subtests with the highest correlation with

Kelley, T. L., Madden, R., Gardner, E. F., and Rudman, H. C., Technical Supplement, Stanford Achievement Test (New York: Harcourt, Brace \& World, 1966); p. 24.
**
Berelson, B., and Steiner, G. A., Human Behavior (New York: Harcourt, Brace \& World, 1964); pp. 209-210.
the Otis, plus the average age at admission to school (less one year), we could compute an IQ score from the student's age and the stanford Achievement subscores. The relationship for such a calculation becomes:
$I Q=\frac{\text { GE Para }+ \text { GE Lang }}{2}+5.3 \quad \times 100$

Where: GE Para $=$	Grade Equivalent Placement on Stanford Achievement
	Subtest Paragraph Meaning
GE Lang $=$	Grade Equivalent Placement on Stanford Achievement
	Subtest Language
$5.3=$	Average Age of cohort at beginning of first grade
	less one year. (Based on admission age of 6 by
	December 1 of entry year. The average age of the
	group would be 6.3 years)

Computations of the IQ fox the 53 students placing in the lower quartile (Table 4) are ahown in Table 6. The GE scores. shown in the table are repeated from the printout of the Interpreted stanford Achievement Scores for students in the county (Gard S). An example is shown on the next page (Table 7). The GE scores for these subscores are in the first three columns of the twelve column block of data shown, and the first three column of the succeeding 36-column block of data. The first 14 digits are the Student Identification Number. An appendix following this discussion describes the raw data.

How accurate is this method of estimating IQ's? A comparison of the Estimated IQ's as just computed can be made with other estimates of IQ's for a given placement score in these Stanford Achievement Subtexts. A Table of Deviations From Stanford Grade Scores for

Table 6

## Computation of Estimated OTIS IQ from Stanford Achievement Scores



$$
* \text { April } 30,1969 \quad * * \text { MA. }=\text { MENTAL AGE }=\frac{\text { PARA }+ \text { LANG }}{2}+5.3
$$

+ IQ $=\frac{\frac{\text { GE }_{\text {PARA }}+{ }^{\text {GE }} \text { LANG }}{2}+5.3}{\text { AGE }} \times 100$,
where $5.3=$ (Average age of entering last grade) - 1

Table 6 (Cont.)

Computation of Estimated OTIS IQ from Stanford Achievement Scores


* April 30, 1969. ** M.A. $=$ MENTAL AGE $=\frac{\text { PARA + LANG }}{2}+5: 3$ $+_{I Q}=\frac{\frac{\mathrm{GE}_{\mathrm{PARA}}+\mathrm{GE}_{\mathrm{LANG}}}{2}+5.3}{\mathrm{AGE}} \times 100$, where $5.3=$ (Average age of entering 1st grade) - 1

Table (Cont.)

Computation of Estimated OTIS IQ from Stanford Achievement Scores

$\begin{gathered} \text { STU. } \\ \text { NO. } \end{gathered}$	$\begin{array}{r} \text { ADV } \\ \text { Para } \\ \text { Mean } \\ \text { (GE Sco1 } \end{array}$	$\begin{array}{r} \text { LANG- } \\ \text { UAGE } \\ \text { (GE SC } \end{array}$	Birth Date	Age   at   Test   Time*	$\frac{\text { PARA }+ \text { LANG }}{2}\left(\begin{array}{l} 2 \\ (G E) \end{array}\right.$	M.A.**	EST OTIS $I Q^{+}$
2419	102	073	03-18-55	14.2	8.75	14.05	99
2064	072	077	06-10-55	14.0	7.45	12.75	91
2065	080	061	10-20-55	13.7	7.05	12.35	90
2066	108	069	03-14-55	14.2	8.85	14.15	100
2310	060	049	03-16-54	15.2	5.45	10.75	71
2226	064	064	01-16-54	15.4	6.40	11.70	76
2311	074	074	01-09-54	15.4	7.40	12.70	83
2312	048	033	06-08-54	14.9	4.10	9.40	63
2313	054	080	11-13-54	14.6	6.70	12.00	82
2266	102	076	12-04-55	13.5	8.90	14.20	105
2073	074.	035	04-06-54	15.1	5.45	10.75	71
2267	096	072	07-05-54	15.0	8.40	13.70	91
2373	080	076	09-29-55	13.8	7.80	13.10	95
2269	077	065	05-11-55	14.0	7.10	$\pm 2.40$	89
2075	056	086	12-16-54	14.5	7.10	12.40	86
2212	060	049	02-14-54	15.3	5.45	10.75	70
2076	080	090	08-15-55	13.9	8.50	13.80	99
* April 30, 1969 ( $\quad$ M* A. $=$ MENTAL AGE $=\frac{\text { PARA }+}{2}$							
$+_{I Q}$	$\text { GE }_{\mathrm{PAR}}$	$\mathrm{GE}_{\mathrm{LAN}}$	$5.3 \times 100$				

where $5.3=$ (Average age of entering 1 st grade) -1
6-Digits/Subscore



$\begin{array}{lr}054062086485 & 061153036011069203091545052052063183 \\ 058113062163 & 042042056062060102074264046021060143 \\ 065183074304 & 063193092565096585091545059102054082 \\ 076324141726 & 075405100646111766121928074304046042\end{array}$

Table 7
6-Digits/Subscore
students with a given Otis IQ is given in the publication: Directions For Administering Stanford Achievement Test, Advanced Battery, ${ }^{*} p .23$. That table is intended for use in predicting expected scores on the Stanford Achievement Subtests for students with given IQ's. If we reverse the process, and find a predicted $I Q$ on the basis of observed deviations from the expected Grade Equivalent Score at the time the test was given (8.8), then we can get another estimate of Otis IQ from the SAT subscores. This has been done with the results shown in Table 8. A fairly close agreement between the two methods is shown in the table. Only a few cases show any disagreement and the disagreements are minor. No estimate of reliability of the estimated Otis IQ using this method has been made,

It is suggested that this same technique may be used with the SAT subscores for Primary I and Primary II Batteries. Since the correlations between the appropriate subscores are lower, the reliability would be lower.

A computer program to compute estimated Otis IQ's based on Stanford Achievement Test Subscores is being devised. It will involve some programing time and probably a different input format (birthdate and subscores on the same card) but it is possible to do it. The resultant computed $I Q$ can be stored in the Student Information Systemprobably on the Raw Score input card (Card $R$ ). The reader's patience is implored.

[^5]Table 8
Expected Range of IQ's On Otis Quick-Scoring Mental Ability Test For Observed Deviation of Stanford GE Scores From Norms for Group (088)

$\begin{aligned} & \text { STU. } \\ & \text { NO. } \end{aligned}$	ADV. PARA. (GE Score)	$\begin{gathered} \text { LANG- } \\ \text { UAGE } \\ \text { (GE Score) } \end{gathered}$	Deviati Mean GE PARA. (GE Score)	$\begin{gathered} \text { ions from } \\ \text { Score, } 088 \\ \text { LANG. } \\ \text { (GE Score) } \\ \hline \end{gathered}$	$\begin{gathered} \text { EXPECTED } \\ \text { IQ } \\ \hline \end{gathered}$	$\begin{gathered} \text { GALC. } \\ \text { IQ } \\ \hline \end{gathered}$
2001	077	072	-011	-016	91-98	94
2301	044	064	-044	-024	81 and below	74
2351	076	057	-012	-031	82-90	86
2302	078	077	-010	-011	91-98	91
2003	089	096	+001	+008	106-111	101
2104	052	048	-056	-040	81 and below	72
2005	060	033	-028	-055	81 and below	75
2008	048	058	-040	-030	81 and below	69
2404	052	065	-036	-023	82-90	82
2252	070	071	-018	-017	91-98	92
2010	078	088	-010	0	99-105	97
2012	080	065	-008	$=023$	91-98	88
2453	077	073	-011	-015	91-98	89
2305	064	061	-024	-027	82-90	75
2017	054	061	-034	-027	81 and below	68
2359	050	049	-038	-039	81 and below	70
2018	058	042	-030	-046	81 and below	75
2019	065	063	-023	-025	82-90	80

## APPENDIX A

DEMONSTRATION OF PRINTOUT OF RAW INPUT DATA

The following pages are demonstration printouts of the input data. The format for each input card is exactly as shown. Explanatory headings and footnotes have been added to explain the input. Further information on these inputs and the questionnaires used to get the data are given in the Student Information System Reference Guide. This appears as a pamphlet (green or yellow cover) or as part of the Western Nevada Regional Education Center's Continuation Application 1970-71, Supplement. This Reference Guide is being revised for reissue at an early date.

As shown on the accompanying printouts, the various types of data appear on various. Input cards (indicated by a letter on the far right of each line). .
Entry Data $=$ Card A
Home Data $=$ Card B
Personal Data $=$ Card C
Stanford Achievement Test Scores = Card S
Stanford Achievement Raw Scores = Card R

Headings appear on each of the demonstration data outputs except for Caxd R. The Raw Scores occupy three digits for each subtest and appear in the same relative position as the corresponding test scores on Card $S$.


OEMONSTRATION\# PERSUNAL UATA


## GO GR STU NO

## C* -*------

$1420105: 362001$
14201051362002
14201101382004
14601201306001
14601102362002
14601201382003
14601101382005
1460110638251
14601202382052
14601102382053
14601502382054
14601101382001
C
C
C

## OEMONSTRATION\# STANFORD ACHIEVEMENT RAW SCORES

6
14201051362001
14201051362002
14201101382004
14601101382001
14601101382002
14601101382003
14601101382005
14601102382051
14601102382052
14601102382053
14601102382054
14601201386001
C

051039	131028634021074047	269R
056041	109027927926077052	569 P
051057	128031026017070047.	$\because R$
048047	116021021021075047	R
041025	096008019015055042	R
041025	096008015015055042	$k$
039033	092016018019059045	$\dot{R}$
049050	120031028018059036	R
031025	06401314 401053034	P
013013	085009015008045033	B
033049	097015023017047033	Q
$032027$	089023026018038028	$R$

$\triangle R I T H$ ARITH ARITH SOCIAL
WORD PARA SPELL STUD LAN- COMPO CONC- APPLI STUB- SEIENCE MEAN NEAN ING SKILL GUAGE TATTO CEPTS CATION IES GEPRS GEPKS GEPRS辣

GFPRS GEPRS GEPRS GEPKS GEPRS GEPRS GEPRS

* GEPRS MEANS\# GE = GRADE EGUTVALENT, A 3 DIGIT NO * 081=8.1

YR = PERCENTILE RANK\# $47=47 \mathrm{TH}$ FERCENTILE ON NATIUNAL NURM $S=$ STANINE: $6=6 T H$ STANINE




$S=S T A N I N E O=6 T H$ STANINE

ASTERISKS INOICATE INFO IS CODEU-- SEE FOLLOWING COMMENTS FOR EXPLANATION EXPLANATION OF ABBREVIATEO HEADINGS\# ENTRY DATA SECTION A

CO (COLUMNS 1-2) \# $14 \equiv$ PERSHING GOUNTY SCHOOL (COLUMNS 3-5) \# 601 = PERSHING COUINTY H S 201 = LOVELOCK ELEMENTARY

GR ICOLUMIN	617	$1=9 \mathrm{TH}$ GKADE
GR (COLUMN	7) \#	$5 \equiv 5 \mathrm{TH}$ GRADE
		$z=10 T H$ GRADE

RACE (COLUMN 23) \# $B=$ BLACK $\quad S=$ SPANISH AM
$1=A M E R$ INDIAN: $\therefore=W=W H I T E$
COUNTY OF RESIDENCE (COLUMN 26) \% $14=$ PERSHING COUNTY
CITY OF RESIOENCE (COLUMN 68) \#\# $21=$ IMLAY, $22=$ LOVELDCK
SPANISH SURNAME (COLUMN 77 IF I IN THIS COLUMN INDICATES SP SURNAME

EXPLANATION OF ABBREVIATEO HEADINGS\# HOME DATASECTIGN B
*LANGUAGE (COLUMN 19) $1=$ ENGLISHY $2=$ ENGLISH \& OTHER $+3=O T M E R$ ONLY


JOB, OR OCCUPATIUN(COLUMNS $37 \& 55$ ) $\quad 1=P R O F, 2=5 E L F-E M P L, 3=S K I L L E D$
MIL\# ACTIVE MILITARY $1 C O L 38) \% 1=Y E S T 3=N O$

EXPLANATION OF ABBREVIATED HEADINGS\# PERSUNAL DATA SECTIUN C
*TRANSPORTATION METHOOLCOL 191 , $\quad$ WALK, BIKE, $\quad 4=5 \mathrm{GHOQL}$ BUS
$\underset{3=0 W I N C A R}{2 F A R} \quad 5=0 T H E R$,
KNOWN LEARIVING OR ACTIVITY LIMITATIONS(COL 25-30) \# 1=YES,BLANK = ND


LOCOMOTVVELCOL 28 IAL-YES, BLANK. $E$ NO
OTHER TCOL 29T\# I COR BLANK IF CDL 2515 I $=Y E S$
HOW KNOWN (COL 30) \# $1=$ PARENT REPORT
2=PRDFESSTUNAL EXAM
3 - SCHOOL OBSERVATION
$4=$ STUDENT REPORT
LUNCH TYPE(COL 31)\# $1=$ SCHOOL HUT LUNCH
$2=5 C H O O L$ BUX LUNCH
3=NONE
BLANK = OTHER
IF HOT LUNCH,PAID BY(COL 32) $1=S C H O O L, 2=F A M I L Y / S E L F$

# OVERAGE STUDENTS AND STUDENTS IN LOWEST QUARTILE 

## DISTRICT G. NINTH GRADE

September 28, 1970
Theodore G. Brough

WESTERN NEVADA REGIONAL EDUCATION CENTER

220 Main Street
P: O. Box 421
Lovelock, Nevada 89419
Te1. (702) 273-2631

110

INTRODUCTION

This pamphlet is a supplement to a previous report in the series: Using Student Data From Computer Printouts, WN-REC, May 25, 1970. In that publication, a transportation analysis for the county was not performed. If the present pamphlet is read with the previous publication close at hand, the points made will become clearer.

## STUDENT PERFORMANCE AND AGE AS A FUNCTION

 OF RESIDENCE AREAIf students are identified as coming to school from one particular town or part of a given town, then a pattern emerges. Organizing the data on the basis of residence and ranking the groups according to the time to school from that place of residence results in the pattern shown in Table 1.

## Table 1 shows the following:

1. A trend toward an increase in overall average performance on the standardized subtests indicated with increasing time to school (up to about 25 minutes), followed by a decrease at the furthest distances (times) out. This trend is interrupted at two residence areas for Paragraph Meaning; one, B, decreases, the other, D, increases rapidly. For Arithmetic Computation, these changes occur at Areas $C$ and $D$, respectively.
2. A trend toward decreasing overall performance with increasing distance (time) from school for Overage and Lower Quartile Students. This trend does not hold for the average performance of Overage students on the Arithmetic Computation measure. Again, Residence Area $D$ is an exception (increases rapidiy).
3. An increase in the proportion of students in each residence area who place in the lowest quartile on one or both of the sub-tests considered.
4. A tendency toward an increase in the proportion of ethnic students with increasing distance (time) from school.

The data in the table is a composite of many residence areas in the county, the distances and characteristics compacted and averaged. Students from various residence areas have been combined when they Iie at similar distances (times) from school. The reault is as described above. Of course, each particular town may have individual peculiarities which will have to be analyzed separately.


# USING STUDENT ENTRY DATA AND STANDARDIZED TEST DATA <br> Overage Students <br> Lower Quartile Students <br> Sex Differences <br> Distance From Town 

July 28, 1970
Theodore G. Brough

220 Main Street
P. O F Box 421

Lovelock; Nevada 89419

```
 Te1. (702) 273-2631
```

4

Using Student Entry Data and Standardized Test Data

This memorandum demonstrates a technique of analyzing Entry Data along with Standardized Test Data as applied to a 9 th grade group in a nearby county.

The Entry Data form yields the following information about students:
Name
Ethnic group
Sex
Birthdate
City of Residence (or at least mailing address)
The Stanford Achievement Test yields a variety of Student Performance measures. From this we can compute an Estimated IQ (see previous publication:
Using Student Data From Computer Printouts, May 25, 1970)
For this analysis we will use the eub-scores: Advanced Paragraph Meaning (PA) and Arithmetic Computation (AR), the two most useful single indicators of excellence in English and Arithmetic. Any other sub-scores or any legitimate measure of student performance (such as grade point average or some teacher estimate) could be used.

From the Birthdate information, the student's age at any particular date (in this case, May 1,1970 ) can be computed. With this information, the identity of students over (or under) age can be identified, and these can be subdivided into three overage groups:
up to six months overage (born between June 1 and November 30, 1954)
six to twelve months over-age (born between December 1, 1953 and May 31, 1954)
over twelve months over-age (born befor December 1, 1953)
The remaindar of the students are in the non-overage group.
From the city of residence, the distance from school for each student can be determined (using a road map).

From the Standardized Test data, the students falling in the lower quartile on one or both standardized tests can be identified.

This information, along with Ethnic group and sex identity allows us to analyze certain over-age characteristics of the various groups of students in this county.

Table 1 summarizes selected information for students classified according to placement in overage or non-overage groups or in lower quartile or upper. 3/4 groups. This table reveals the following trends:

1. a general increase in age with decreasing placement in quartile group.
2. a general decrease in performance with increasing age group placement.
3. an increase in proportion of male students with increasing age group and decreasing quartile placement.
4. a strong increase in proportion of Spanish-American students with increasing age and a moderate increase in proportion of Spanish-American students with decreasing quartile placement.
5. virtually no change in proportion of boys and girls among Spanish-American students with changing age-groups or quartile placement.
6. among students who live out of town: a rapid increase in proportion of students with decreasing quartile placement and an equally rapid increase in proportion of students with increasing age placement.

In summary: Girls are doing better than boys (except for Spanish-Americans); the Spanish-American students and out-of-town students are doing much worse than the in-town students. The Spanish-American boys and girls are not being affected sifferently.

Table 1

## Selected Characteristics of 9 th grade Students by Age or Performance Group

	Upper $3 / 4$	$\begin{gathered} \text { Group } \\ \text { Less } \\ \text { Overage } \\ \hline \end{gathered}$	$\begin{gathered} \text { Overali } \\ \text { Group } \\ \hline \end{gathered}$	Overage Group	Lower Quartile
Age:	15.1	14.9	15.3	16.0	15.7
PA:	63.0	59.2	48.2	31.9	22.1
AR:	65.8	64.1	51.7	32.4	26.9
Prop. M:	41.1	34.7	44.1	60.7	52.4
Prop. F:	58.9	65.3	55.9	39.3	47.6
$\begin{aligned} & \text { \% of } \\ & \text { Total: } \end{aligned}$	72.7	63.6	100	36.4	27.3
Prop of Sp-Amer:	5.35	2.04 (1)	6.5(5)	14.3(4)	$9.5(2)$
Prop. of Total Sp:	60	20	100	80	40
Prop: M:	50	50	40(2)	50	50
Prop. F:	50	50	60(3)	50	50
Prop   5 mi   \& more:	5.35	14.3	18.2	28.6(8)	28.6

Prop. M: = proportion of Males in each classification etc.,

Numbers in parenthesis are the number in that group
PA and AR: Stanford Achievement subscores, National Percentiles

$$
399
$$

Table 2 explores the overage group further. The upper part of the Table refers to all students in the overage groups as compared to the total group and the non-overage group (total minus overage). The lower part of the Table has similar data for the out-of-town students ( 5 miles or more from school).

The Table reveals the following:

1. an increase in proportion of males with increasing age grouping, which reverses and levels off for the groups overage by 6 months and more.
2. a decrease in performance on Paragraph meaning (PA) and arithmetic (AR) subtests with increasing age.
3. an almost stable proportion Spanish-American students in each overage category (most in 6 to 12 months overage group) but that 4 out of 5 Spanish-American students are overage.
4. the out-of-town students are slightly older than the other students in each age group with the exception of the nonoverage group.
5. there is a larger proportion of students in the overage group among out-of-town students than for the whole group.
6. for out-of-town students the proportion of male students to female students increases with overage grouping (sketchy data).
7. there are no Spanish-Anerican students coming into school from out-of-town in the 9 th grade.
8. the academic performance (standardized test results) is lower for out-of-town students in all categories but one - arithmetic, overage up to 6 months, where the performances of the out-oftowners match the group performance.

Table 2

Selected Characteristics, uf Overage Group vs. Others (9th grade)

	Over-age Group:			
	All	6 to	Over	
Non-Overage	Students	6 mos.	12 mos.	12 mos.


Age (yrs.) :	14.9	15.3	15.5	16.1	16.6
Prop. of All:	63.6	100	15.6	13.0	7.8
$\begin{aligned} & \text { Prop. in : } \\ & \text { group of } \mathrm{M}: \end{aligned}$	34.7	44.1	$66.7(8)$	60 (6)	50 (3)
group of F:	65:3	55.9	33.3 (4)	40(4)	50 (3)
\% Sp-Amer	2.04 (1)	6.5 (5)	2.04 (1)	4.08(2)	2.04 (1)
$\begin{aligned} & \text { STAN ACH } \\ & \text { PA: } \end{aligned}$	59.2	48.2	34.6	29.6	32.7
AR:	64.1	51.7	31.3	35.1	29.3

Students 5 mi. or more from school:

Age (yrs ):	14.3	15.6	15.7	16.2	16.7
Prop of group:	42.8	100	35.7	14.3	7.1
Prop : of M:	50	$42.7(6)$	$40(2)$	$50(1)$	$1.00(1)$
Prop: of F:	50	$57.3(8)$	$60(3)$	$50(1)$	0
$\%$ Sp-Amer:	0	0	0	0	0
STAN ACH	43.5	31.1	36.1	32.5	9.0

Numbers in parentheses are number of students in group. PA and AR: Stanford Achievement Sub-Scores, National Fercentiles.

Table 3 displays the data for students classified according to place of residence. Town $A$ has been divided into two district halves, upper $A\left(A_{1}\right)$ and lower $A\left(A_{2}\right)$. The rest of the letters refer to nearby towñs surrounding Town $A$.

Table 3 shows the following:

1. the proportion of overage students increases strongly with distance from school (distance from A).
2. the proportion of students in the lower quartile increases strongly with Jistance from school.
3. fifty percent or more of the students in the outlying towns are either overage or in the lower quartile. This increases to 100 percent in the farthest outlying town. (Scanty data).
4. the average academic performance of the students in the classifications: overall, overage, and lower quartile in general decreases with increasing distance (some exceptions).
5. the population of students in upper $A$ (A1) and lower $A$ (A2) is quite different as indicated on all measures. Students in lower A outperform students in upper A in all areas but arithmetic, where upper $A$ overage and lower quartile students have a slight performance advantage. Without the students in lower A, the average county-wide performance on the Stanford Subtests would be vastly different.




星R

# STANDARDIZED TESTING, REGIONAL MOPMS. WESTERN NEVADA REGION 

8Th GRade: SpRING 1969, spring 1970
3rD GRADE: SPRING 1970

September 26, 1970

Theodore G. Brough
Beryi. I. Riehm

WESTERN NEVADA REGIONAL EDUCATION CENTER
220 Maln, Street
P. O. Boxs 421 .

Lovelock, Nevada, 89419
Te1. (702) 273-2631

## 1. Achievement of Students in the Repion

Stanford Achievement Testing was performed in each county of the Region in the Spring and Fall of 1969 ( 8 th grade) and in the Spring of 1970 (3rd and 8 th grades). The Center has compiled Regional Norms fox these results at the 8 th grade and the 3rd grade levels. The Means (Naticial Fercentiles) for each grade level for each sub-test as Well as the Overall Means are listed in Table 1.

In examining the regional test results as given in Table 1, the weakest area for the students tested at the 8 th grade level in Spring 1969 Was Arfthmetic Computation (Mean: $34 \%$ on National Norm). Other weak axeas were Science (Mean: 40\%), Social Studies (Mean: 42\%); and Language (Mean: 43\%). For the 8 th grade students tested in Spring 1970, the weakest area was again Arithmetic Computation (Mean: 32\%) . Other weak areas were Arithmetic Applications (Mean: 42\%), Spelilng (Mean: 42\%), and Language Usage (Mean: 43\%). The Overall Mean for both Years was 43\%. Except for the changes in Science (from 40\% to 45\%) and in Spelling (from $46 \%$ down to $42 \%$ ) there fere no real differences between the two successive groups of 8 th grade students.

The 3xd grade test results reveal weaknesses in two areas: word Meaning (41\%) and Arithmetic Computation (44\%). Apparentiy, Arithmetic Computation is a continuing problen area in the region"s schools. However, when the quartile breaks are calculated and readjusted for scoring at 3.8 instead of 3.9, the quartiles fall at or at re National Norms. (See the
discussion concerning quartile breaks, which follows.) A conclusion as to whether or not the weakness observed in Word Meaning at the 3rd grade is an indicator of a later problem in Spelifing or Language at the higher grades must await further study. It seems possible, however.

Perhaps of more interest than Regional Means based on a national standard, would be local quartile standings based on national grade equivalents. Tables 2,3 and 4 which follow define the quartile break points for the test results in the Region. The quartile break points show the quartile rankings (in Grade Equivalents and percentiles as National Norms) for the students in the 8-county Region. That is, the scores given in the tables define the grade levels of achievement below which $7 / 4,1 / 2$ and $3 / 4$ of the students in the Region placed on the Stanford Achievement sub-tests. With these breakpoints as indicated, the varlons schools in the Region can examine local school performance as compared to a rural complex of 8 counties as well as to National Norms.

125

Table 1

## EIGHT COUNTY SCHOOL DISTRICTS IN <br> WESTERN NEVADA REGION

Mean Pexformances Fox Two Successfve Years On Stanford Achievement teat (Percontilea), Bth Gxade Leval

Word   Mean	Pata. Mean.	Spel-   1ing	Word study Skill	Languabe	Artch.   Comp.	Arith. Conc.	Ardtb. Appl.	Soc. Stud.	Selence
Mean.	mean.								

Spring-
Fail.
1,969
(8th)
(Overal1 43\%)

(Overall 43\%)
 Mean Performances, 3 rd Grade Level


126

Table 2

## EIGHT COUNTY SCHOOL DISTRICTS IN WESTERN NEVADA GEGION

Quartile Bredudowne, Regional Norms, Spring 1969, 8th Grade

For Seanford Achievement Test given at prade level $8.9^{*}$ the followng are the Grade Equivalents and Notional Percertila Scorea for the duartile breaks of the subscores;

	Q1-25\%		$\operatorname{Mean}^{* 2 x}$		Q 3-75\%	
	G.E.	\%	G.E.	7	Q, E.	$\underline{\text { \% }}$
Parg. Mean.	6.90	23	8.48	47	10.60	72
Spel14ng	7.05	25	8.62	46	10.80	70
Language	6.40	20	8.06	43	10.20	66
Arith. Corop.	6.20	12	8.04	34	10.20	66
Arhth. Conc.	6.90	20	8.72	46	10.90	74
Arith. Appl.	7.20	22	8.46	44	10.52	66
Soc. Studtes	6.50	17	8.25	42	10.60	68
Science	6.30	18	8. 16	40	10.80	77

[^6]
# EIGHT COUNTY SCHOOL, DISTRICTS IN WESTERN NEVADA REGION 

Quartile Breakiowns, Regional Norms, Spring 1970, 8th Grade

For Stanford Achievement Test given at grade level 8.9, the following are the Grade Equivalents and National Percentile Scores* for the quartile breaks of the subscores:

	Q 1-25\%		Q 2-59\%		Q 3-75\%	
	G.E.	\%	G.E.	$\%$	G.E.	\%
Para. Mean.	6.85	23	8.98	51	10.75	76
Spelling	6.77	22	8.18	42	10.40	66
Language	6.47	21	8.21	44	10.19	66
Arith, Comp.	6.25	12	7.92	32	9.47	59
Arlth. Conc.	7.14	23	8.61	45	11.25	78
Arith. Appl.	7.04	19	8.20	38	10.23	62
Soc. Studies	6.81	22	8.25	42	10.62	66
Science	6.42	19	8.52	46	10.67	75

[^7]Adv. Para. Mean: 8.79, 49\% Spelling: 8.42, 44\%
Language: $\quad 8.28,45 \%$ Arith. Comp.: 8.00, 34\%

Arith. Concepts: 8.93, 50\%
Arith. Appl.: 8.53, 44\%
Social Studies: 8.56, 45\%
Science: 8.56, 47\%
$\mathrm{N}=1224$

ELGHT COUNTY SCHOOL DISTRICTS IN WESTERN NEVADA REGION

Quartile Breakdowns, Regional Norms, Spring 1970, 3rd Grade

For Stanford Achievement Test given at grade level 3.9, the following are the Grade Equivalents and National Percentile Scores* for the quartile breaks of the subscores:

	Q 1-25\%		Q 2-50\%		Q 3-75\%	
	G.E.	\%	G.E.	\%	G.E.	\%
Word Meaning	3.06	20	3.61	36	4.28	62
Para. Meaning	3.11	24	3.73	43	4.52	68
Science \& Social Studies Concepts	2.97	26	4.04	55	5.07	76
Spelling	3.15	18	3.84	46	4.63	75
Word Study Skilis	2.80	28	4.39	57	6.03	80
Language	3.06	23	3.88	49	4.82	70
Arith. Comp.	3.36	23	3.81	45	4.27	71
Arithmetic Conc.	2.98	28	3.96	51	4.72	76

[^8]Word Study Skil1s: 4.46, 58\%
Language: $4.00,52 \%$
Arith. Comp.: $3.78,44 \%$
Arith. Conc.: 3.92, 50\%

$$
3.92,50 \%
$$

As a further aid in analyzing Standardized Test data, two additional tables have been compiled. The tables furaished with the Stanford Achievement Test Batteries*give Grade Equivalents, National Percentiles and Quartile breakdowns for tests given at grade levels 3.6 and 3.9 or at grade levels 8.6 and at 8.9. For testing done close to May 1 (grade levels 8.8 or 3.8 ) some adjustumnts have to be made for the scores given in the tables. Tables 5 and 6 which follow are quartile breakdowns (at 3.8 and 8.8) of the National Norms for each Stanford Achievement Subscore (given as Grade Equivalent Scores). These norms were computed by interpolation between the scores given in tables at grades 3.6 and 3.9 and at 8.6 and 8.9.*

Applying this same logic to the average GE scores given in Tables 2, 3, and 4 of this report and computing quartile breaks at grade levels 8.8 and 3.8 results in the data shown in Tables 7,8 , and 9 , which follow.

Use of Tables 5 and 6 enables one to compare local results (individuals, classes, schools, and the region) with Nationally Normed Quartiles at grade levels 3.8 and 8.8.

Use of Tables 6, 7 , and 8 enables one to compare local results (Individuals, classes, and schools) with Regionally Normed Quartiles at grade levels 3.8 and 8.8 .

[^9]QUARTILE BREAKDOWN, NATIONAL NORMS

For Stanford Achievement Test given at grade level 3.8, the following are Grade Equivalents for various percentiles for the subscores:

	$25 \%$		$50 \%$
Word Meaning	3.16	3.80	45
Paragraph Meaning	3.08	3.80	4.60
Science \& Social   Studies Concepts	2.87	3.80	4.70
Spelling	3.23	3.80	4.86
Word Studies Ski11s	2.67	3.80	4.53
Language	3.06	3.80	5.52
Arithmetic Computation	2.84	3.80	4.94
Arithmetic Concepts			3.20

(These are interpolated G.E. scores based on the G. E. scores given at 3.6 and at 3.9.)

QUARTILE BREAKDOWN, NATXONAL NORMS

For Stanford Achievement Test given at grade level 3.8, the following are Grade Equivalents for various percentiles for the subscores:

	25\%	50\%	75\%
Paragraph Meaning	7.03	8.80	10.72
Spelling	7.01	8.80	11.22
Language	6.85	8.80	10.62
Arithmetic Computation	7.34	8.80	10.97
Arithmetic Concepts	7.34	8.80	10.93
Arithmetic Applications	7.33	8.80	11.03
Sacial Studies	6.97	8.80	11.11
Science	6.82	8.80	10.60

(These are intexpolated G.E. scores based on the G. E. Scores given at 8.6 and at 8.9.)

## Table 7

## EIGHT COUNTY SCHOOL DISTRICTS IN WESTERN NEVADA REGION

Quartile Breakdowns, Regional Norms, Spring 1969, 8th Grade

For Stanford Achievement Test given at grade level 8.8, the following are the National Percentiles for the Grade Equivalents in Table 2, after interpolating between the G.E. scores given in the tables at grades 8.6 and 8.9.*

	$\frac{Q 1-25 \%}{\%}$	$\frac{M e a n * *}{\%}$	$\frac{Q 3-75 \%}{\%}$
Paragraph Meaning	$\frac{1}{\%}$	48	73
Spelling	24	48	73
Language	26	44	67
Arithmetic Computation	20	35	67
Arithmetic Concepts	13	48	75
Arithmetic Applications	20	44	67
Social Studies	22	43	69
Science	17	48	77

[^10]Table 8

## EIGHT COUNTY SCHOOL DISTRICTS IN WESTERN NEVADA REGION

Quartile Breakdowns, Regional Norms, Spring 1970, 8th Grade

For Stanford Achievement Test given at grade level 8.8, the following are the National Percentiles for the Grade Equivalents in Table 3, after interpolating between the G.E. scores given in the tables at Grades 8.6 and 8.9.*

	$\frac{Q 1-25 \%}{\%}$	$\frac{Q 2-50 \%}{\%}$	$\frac{Q 3-75 \%}{\%}$
Paragraph Meaning	23	52	76
Spelling	23	43	67
Language	21	45 *	-67
Arithmetic Computation	13	33	60
Arithmetic Concepts	23	47	79
Arithmetic Applications	20	39	63
Social Studies	22	43	67
Science	19	47	76

[^11]Quartile Breakdowns, Regional Norms, Spring 1970, 3rd Grade

For Stanford Achievement Test given at grade level 8.8, the following are the National Percentiles for the Grade Equivalents in Table 4, after interpolating between the G.E. scores given in the tables at grades 3.6 and 3.9.*

	$\frac{Q 1-25 \%}{\%}$	$\underline{2}-\frac{50 \%}{\%}$	$\frac{Q 3-75 \%}{\%}$
Word Meaning	23	41.	67
Paragraph Meaning	27	46	71
Science \& Social Studies Concepts	28	58	78
Spelling	22	51	78
Word Study Skills	32	58	81
Language	25	52	72
Arithmetic Computation	28	50	77
Arithmetic Concepts	29	54	77

[^12]
## 3. Quartile Breakdown, Regional Norms

Analyzing the Quartile Breaiks given in Tables 7, 8, and 9 reveals the following:

The weaknesses observed in Arithmetic Computation at the Eighth Grade level for two successive years is again observed in the quartile breakouts. In fact, at the successive Guartiles the Region's Eighth Grade students seem to fall further behind. The Spring 1969 Eighth graders at the third quartile are not as bad off as the Spring 1970 Eighth Grade students, however.

The weaknesses observed in Eighth Grade Science performance for two successive years are also observed in the quartile breakouts. In the case of the 1969 Eighth Grade students, the Science weakness is most serious at the firet and second quartile breaks, but the upper quartile group does not depart from the National Norm. For the 1970 Eighth Grade students, the obvious weak point is at the firat quartile break; the others almost reach or exceed the National Norms.

The Eighth Grade students are weak in Social Studies at each of the quartile breaks for both years tested. In Language Usage, the Eighth Grade students become increasingly weak as one progresses from the first quartile break point to the third. In other words, the average and better students do not compare well with the average and better students nationally. The Eighth Grade students' performance in Spelling for 1970 follows a similar pattern, the upper quartile groups depart further and further from National Norms.

For the Third Grade students, the apparent weakness in Arithmetic Computation does not appear in the adjusted quartile breaks in Table 9. The Third Grade students are apparently achieving at the National Norm or are exceeding it.

In hord Meaning, however, the weakness observed among Third Grade students by analyzing the Means (Table 1) is still apparent in the Quartile Breakdown Analysis. In this case, the weakness is most serious among the middle and upper achieving atudents.

The weakness in spelling is still apparent among the lowest quartile students. This may be the precursor to the weakness in spelling among the eighth grade students.

## APPENDIX

Stanford Achievement Test, Spring 1970

Regional Distributions and Cumulative Percentages

Third Grade
EIghth Grade

138


# SECONDARY COURSES OFFERED IN THE WN-REC REGION 

## October 19, 1970

Victor M. Hyden, Jr. Margaret S. Madden

WESTERN NEVADA REEIONAL EDUCATION CENTER

## 220 Main Street

## Lovelock, Nevada 89419

Tel. (702) 273-2631

INTRODUCTION


## Purpose of Study

It is hoped the preparation, publication, and distribution of this document will serve at least three purposes:

1. Provide schools/districts with data for use in analyzing secondary (9-12) course offerings within the Region.
2. Provide the means by which student classroom performances can eventually be inserted in the WN- REC Student Information System.
3. Provide to appropriate agencies course identity data for use in any state-wide or regional curriculum study.

## Scope of Study

In designing a student information system for use by the schools it was found necessary to identify all course offerings by title in the eight districts. These titles, with assignec numbers, would be incorporated in the system along with student marks (grades) and credits.

It was discovered that the Clark County School District had recently conducted an extensive study of their secondary course offerings. WN-REC's analysis of their subject categories and numbering format resulted in the same categories and numbering system being adopted for this Region's student data systen. However, the Center stopped short of requesting course content descriptions. Such a request is not within the scope of the Center's obligations even though it seems logical that a course content study would be an appropriate follow-up to this stedy.

For reasons of managability and pertinence, it was finally decided to collect only titles of courses which are (1) included in the transcripts cf current secondary students, (2) continuing or new courses for 1970-71, and (3) projected courses for the near future. The compilation's accuracy and completeness can be attributed to excellent cooperation from the following schools:

11 County	- E. C. Best Junior High School   - Churchill County High School
Carson City County	- Carson Junior High School   - Carson City High School
Douglas County	- Douglas County High School   - George Whittell High School
Humboldt County	- Albert Lowry High School   - McDermitt High School
Lyon County	- Fernley High School   - Smith Valley High School   - Yerington High School
Mineral County	- Mineral County High School
Pershing County	- Pershing County High School
Storey County	- Storey County High School

Special credit goes to the Center's secretary, Mrs. Margaret Madden, for guiding and pushing this study through to its publication.

## TABLE OF CONTENTS

Language Arts (001-099)	Pages
Foretgn Language (100-199)	$1-2$
Mathematics (200-299)	3
Science (300-399)	$4-5$
Social Studies (400-499)	6
Business (500-599)	$7-8$
Physical Education (600-624)	$9-10$
Fine Arts - Music (625-649)	11
	12
Home Economics (700-799)	13
Industrial and Vocational Arts (650-699)	14
	$15-17$
Mini-Classes (Pershing County High School)	18



				$\cdot \text { IH *ir wosxed }$		$\begin{aligned} & \dot{\infty} \\ & \dot{y} \\ & \dot{3} \\ & \dot{3} \\ & 0 \\ & 0 \\ & 0 \\ & \text { P1 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-S'H TTEコ7TLM •OəD		$\begin{aligned} & \dot{0} \\ & \text { a } \\ & \text { H } \\ & \text { + } \\ & \text { H } \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		- ${ }^{\prime}$ 'h Ketrea yagus		Mineral Cty. H.S.	"S"H *K7D 8utusxad	
Beginning Libxary Science	045		x							x		X	X		
Library Science	046		K		X			X		X				x	
Communicative Skills	056				x										
Literature	061						X								
Mythology	064										x				
The Novel	067						x	$x$							
Elements of Reading	070											*			
Developmental Reading	071			X								X			
Remedial English	074		X												
Remedial Reading	075						X								
Begimming Speech	081				X		X		X						
Speech I	082		X				$\mathbf{x}$	X		X	X	X	X		x
Speech II	083		x				X	X				X	X		x
Orientation	090				x										


FOREIGN LANGUAGE				- IH • Ir uosiev	$\cdot \mathrm{S} \cdot \mathrm{H} \text { K7FD uosied }$			${ }^{\circ} \mathrm{S} * \mathrm{H} \text { КIMOT } \exists \mathrm{X} \partial \mathrm{qTF}$			$\text { -S"H Kettea } 47 \text { tus }$			$\text { -S'H } \cdot K 7 D \text { Buţusxod }$	¢ 0 0 $\vdots$ 0 0 0 0 0 0 0 0
French I	102		X	x	$x$	x	x								x
French II	103		X		X	$x$	x								x
French III	104					x	x								
German I	120				\%			X	x			X			
German II	121				x			x				X			
German III	122							x							
Latin I	134				Y	X									
Latin II	135				$x$	X									
Spanish I	141	X	X	X	X	X	\%	X		x	X	$x$	X	X	X
Spanish II	142		X		X	X	X	X		X	x	*	$x$	X	X
Spanish IIJ	143		X		X	x	X	X		X		X		x	
Spanish IV	144		*											X	

## 146

MATHEMATICS				$\begin{aligned} & \dot{H} \\ & H \\ & B \\ & B \end{aligned}$			-S"H [Tכ刁7T4M •оә5	'S'H KxMot queqIV					0  		筞
Pre－Algebra	200			X						x	x				x
Intermediate Algebra	201											X			
Algebra I	202	x	X	\％	X	X	X	X	X	X	X	X	X	X	x
A．lgebra II	203		x		X	X	X	$x$	X				X		x
Algebra II and Trigonometry	204						$x$			$x$	X	x			X
Plane Geometry	220		x			x	x	x	25	x	X				x
Plane and Solid Geometry	221				x							$x$	x		$x$
Math II（Algebra \＆Geometry）	227													X	
General Math	232	X		X	X	x	X	x	X	X	x	X	X	X	X
Basic Mathematics，Vocational	238									x					
Business Mathenatics	239		X				X	$x$		X		X			X
Traditional Mathematics I	240												x		
Traditional Mathematics II	241												X		
Shop Mathematics	246									x					
Technical Math I，Vocational	247		X												
Math Analysis	250									X		X			
Senior Mathematics	251		X		X										8
Trigonometry	252				X		X				X			x	x
Trigonometry，Advanced Math， and Analytic Geometry	253					$\mathbf{x}$		X			x		x		
Trigonometry，Math Analysis	254					X									
Advanced Trigonometry and Calculus	255					9 CH								x	



## 148

SCIENCE								Albert Lowry H.S.				$\cdot S ` \text { H पoziquad }$		
General Science	304			x	x		x	x	x				x	x
Life Science	305		x							x		x		
Earth Science	306											x		
Physical Science	307	x	x		X	x				x	x			
Agriculture Science	308		x											
Aviation Science	309		x											
Advanced Science	310		x											
Vocational Physical Science	311											x		
Advanced Aeronautics	312		x											
General Biology	320		$x$		x		x	x		x	x	x	$x$	x
Biology I (BSCS Blue Version)	321							x						
Biology I (BSCS Green Version)	322								x					
Biology II	324						x	x			x		x	$x$
Chemistry I	332		x		x	x	X	x	x	x	x	x	$x$	x
Chemistry II	333													
Physics I	342		x		x	x	x	x		x	x	x	x	x
Transistor Electronics	365		x										x	
Photography I	370		x		x							x		x
Photography II	371		X											
Physiology	375													
Zoology	385				x									
Botany	390				x									




BUSINESS				$\begin{aligned} & \text { - } \\ & \text { H } \\ & \text { H } \\ & \text { H } \\ & \text { B } \\ & 0 \\ & \text { H } \\ & 0 \end{aligned}$	0 0 0 5 0 0 0 5 0 0 0 0 0										\%
Person Typing	502							x				X			
Typing I	503	X	$x$	X	X	$\mathbf{x}$	x	x	x	X	x	x	x	x	x
Typing I, Vocational	504						$\mathbf{x}$								
Typing II	505		X		X	x	x	x		x	x	x			x
Typing II, Vocational	506						x		x				x		
Shorthand Theory, Vocational	510						x								
Shorthand I	512				x	X	X	X		x		x	x	X	x
Shorthand II	513				x		x	x		x		x	$x$		
Notehand	518				X		X								
General Business	521				X		X	x						$\mathbf{x}$	x
Business English	523		X					x							x
Business Law	524		X				X				x		$x$		x
Business Mathematics	526		x								$\mathbf{x}$				
Commercial Mathematics, Vocational	530						X								
Distributive Education I	533		X					x	x						
Distributive Education II	534		X												
Accounting I, Vocational	540		X										x		
Accounting II, Vocational	541												X		
Bookkaeping I	542				$\mathbf{x}$	X		x	X	x	X	X		X	x
Bookkeeping II	543										$x$				

Office Practice . 551

Office Practice I, Vocational 552
Office Practice II, Vocational 553
Applied Office Practice I 554
Applied Office Practice II 555
Clerical Office Practice 556
Filing, Vocational 557
Office Machines 558
Production Typing and Office Markines, Vocational 561

Office Occupations 563
Cooperative Office Education 564
Data Processing 571

x . ..... x
x


MUSI								*S"H KIMOT 7xeqty						
Glee Club	625													
Mixed Chorus	626		x		X	x	X	X		X		$\mathbf{x}$	x	
Choir	627	X		'							x			x
Madrigals	629							x						
Folk Singers	630				x									
Beginning Band	631			x	X		x		x	x				
Junior Varsity Band	633													X
Varsity Band	634	X	x		X	X	$\mathbf{x}$	X		x		X	x	X
Pep Band	635		X			X	x	X	X	X			$\mathbf{x}$	X
Stage Band	636		X							X			X	
Concert Band	637		\%											
Marching Band	638		X											
General Music	640												X	
Music Appreciation	641				X		X	x		x		X		
Music Theory	643			-								X		

## ART

Art - 9th Grade	652								x	
Art I	653	x	x	x		x	x	x	x	x
Art II	654	x	x		.		$x$	x	x	
Art III	655	$\times$	x				x	x	x	
Art IV	656						x	x	x	
Fundamentals of Design	659						x			
Drawing and Painting I	663						x			
- Arts and Crafts	670					x				
Arts and Crafts I	671									
Ceramics	676						x			
Crafts	679			x						
Commerctal Art I	680	$\mathbf{x}$								
Jewelry Design	681						x			
Fabric Design	685				x					
General Printing I	686	x								
General Printing II	687	\%								
Graphics	690					x				

156

## home economics

Bachei or Homemaking - Jr. High 700
Bachelor Homemaking - Sr. High 701

Beginning Homemaking 702
Homemaking I 704
Home Economics I 706
Home Economics.II 707 ..... 07
Advanced Home Economics ..... 708
Senior Homemaking ..... 710
Home Management ..... 711

11
Family Living ..... 712
712
Family Living and Child Davelopment ..... 713
13
Child Development ..... 715 ..... 15
Clothing ..... 721 ..... 21
Advanced Clothing and Textiles ..... 722 ..... 22
Clothing for Jr. Girls ..... 724 ..... 24
Fashion Sewing ..... 725
Dressmaking ..... 726 ..... 726
Foods ..... 741
Introduction to Food Service ..... 747
Creative Foods ..... 748
Housing and Housing Furnishing ..... 761
Interior Design
E.C. Best Jr. Hi. ..... Churchill Cty. H.S.

762
$\mathbf{x}$
x
$x$06

				$\begin{aligned} & \text { 状 } \\ & \dot{H} \\ & H \\ & \text { E } \\ & 0 \\ & \text { H } \\ & \text { H } \end{aligned}$	0 0 0 0 0 0 0 0 0 0 0 0 0			Albert Lowry H.S.		安				¢
INDUSTRIAL AND VOCATIONAL ARTS														
Agriculture I, Vocational	810	X	X					X		x		x		x
Agriculture II, Vocational	811		x					x		X				x
Agriculture III, Vocational	812		x					X		X				x
Automotive Mechanics I	821		$\mathbf{x}$		x	x		$x$	\%	$\mathbf{x}$		\%	x	X
Automotive Mechanics II	822		X					x				X	$\mathbf{x}$	x
Automotive Mechanics III	82.3													x
Auto Engine Testing and Service, Vocational														
Small Gas Engines	833	X	$x$			X								
Gas Engines (Farm, Home and Recreational)$834$														
Drafting I	840				x			x		x	x	x	x	x
Basic Drafting, Vocational	841				$\mathbf{x}$									
Architectural Drafting; Vocational	843												X	
Electro-Mechanical Drafting I,   Vocational   844														
Drafting II	845				X			x		$\mathbf{x}$		x		x
Drafting II, Vocational	846				$\mathbf{x}$									
Electro-Mechanical Drafting II, Vocational	847		X											
Drafting III	848		X		X			:						
Drafting III, Vocational	849		*											
Drafting IV	851		$\times$											


				$\begin{aligned} & \text { 驾 } \\ & \text { H } \\ & H \\ & H \\ & \text { H } \\ & 0 \\ & 0 \\ & H \\ & 0 \\ & 0 \end{aligned}$								$\begin{aligned} & \text { u } \\ & \text { w } \\ & \text { 品 } \\ & \text { 品 } \\ & \text { H } \\ & 0 \end{aligned}$		$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { H } \\ & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Technical Drafting I	860							x	．					
Basic Electricity	870					x				x			＊	
Basic Electricity；Vocational	871											$\mathbf{x}$		
Beginning Electronics	880		X											
Electronics I	881		x		x									
Basic Electronic Circuits and Systems，Vocational	884		X											
Crafts	930									x				
Industrial Arts I	932			x					X				$\mathbf{x}$	X
Industrial Arts II	933								x				X	$\mathbf{x}$
Industrial Arts III	934								x				x	X
Industrial Crafts I	935								x		$\mathbf{x}$			
Welding	941					x								
Metals	943	$x$			X									
Metal Lathes	946					X								
Woodwork for Girls	950									X				
Wood Technology	951		x											
Wood I	952	x	x		X	x	X	x		x				
Wood II	953		X		X		x	X		X		X		
Wood III	954		x						$\cdots$					
Carpentry \＆Cabinet Making	955		＇											X
Carpentry I，Vocational	956		X				：							
Carpentry II，Vocational	957		8．		．									
Carpentry III，Vocational	958		X											
ERIC				16				$53$				$\cdots$		


			${ }^{*} \mathrm{~S} \cdot \mathrm{H} \cdot \mathrm{~K} 7 \mathrm{D} \text { tITYoanuo }$					$\cdot \mathrm{S} \cdot \mathrm{H} \text { KIMOT } 7 x ə q \mathrm{IV}$			0			
Mechanical Drawing I	980	x												
Welding, Cement and General Construction	981										X			
Power Mechanics	982	x	x											
Masonry and Carpentry	983					$\mathbf{x}$								
Concrete and Masonry	984											x		
Masonry	985									$x$				
Basie Shop Skills	986											x		
GIrls General Shop	987								x					
Construction I	990		.									x		
Construction II	991											x		
Construction Tech. I	992		x											
Construction Tech. II	993		x											

PERSHING COUNTY HIGH SCHOOL MINI-CLASSES

Pershing County (Lovelock) High School is piloting a new secondary curriculum package during 1970-71 - the Mini-Classes. These classes, offered in grades $10-12$, consist of approximately two dozen student originated, high interest, quarter-credit courses offered each semester. The uniqueness of these offerings suggested their being identified, at least temporarily, in a separate section of this publication. Following are the titles of courses offered in the first semester of the 1970-71 school year:

Axts and Criafts
Boys Home Economics
Community Problems
Computer Program
Conservation
Consumer Education
Creative Writing
Current Events
Drama Workshop
Ethnic Literature and History
Girls' Auto Mechanics
Good Grooming
Horse Care
How to Get a Job and Hold it
Motor Tune-up
Personal Typing
Preventive Maintenance, Farm Machinery
Publications
Special Projects in Science
Speech
Welding
Persons desiring additional informatioh should contact Mr. Richard Frazier, Princtpal, Pershing County High School, Lovelock, Nevada.

# PREDICTING STANFORD ACHIEVEMENT SCORES <br> (NATIONAL PERCENTILES) <br> FROM STUDENT MARKS 

December 18, 1970
Theodore G. Brough

## PREDICTING STANFORD ACHIEVEMENT SCORES (NATIONAL PERCEMTILES) FROM STUDENT MARKS.

No evidence regarding the predictive validity of the Stanford Achievement Test is available. 1 For that reason it has been recommended that the Stanford Achievement Test Subtests not be used for individual diagnosis. "The decision to change the grade placement of a pupil must be based on a more detailed analysis of a pupil's functioning than is represented by a grade score." 2 If, however, an evaluation of an individual's (or a group's) relative strengths or weaknesses is desired, then the Stanford Achievement Test Subscores, especially when expressed as national norms, can be used.

A previous memorandum has described a method for approximating Otis IQ's when Stanford Achievement sub-scores are available. 3 These, of course, should not be used for individual but rather for group diagnosis. The present memorandum describes a technique for predicting placement on Stanford Achievement sub-scores when semester grades are available.

Its only purpose is to supply estimated Stanford Achievement Test data when only semester marks are available for groups of students in order to identify relative strengths and weaknesses. These estimates should be discarded when more definitive data is available.

1. Mehrens, W. A, and I. J. Lehmann, Standardized Tests in Education (New York: Holt, Rinehart and Winston, 1969), p. 184
2. Kelly, T. L., R. Madden, E. F. Gardner, and H. C. Rudman, Stanford Achievement Test Technical Supplement (New York: Harcourt, Brace and World, 1966) p. 16
3. Brough, T. G., Using Student Data From Computer Printouts, Three Examples (Lovelock, Nevada: Western Nevada Regional Education Center, May 25, 1970), pp. 19-26.

Performance data was available from 9 th grade students in County A. This consisted of 1) Semester marks for the previous 8th grade year and 2) Stanford Achievement Test Data from the fall semester of the 9th grade year. Correlations between the sum of the semester grades for each pupil (based on a scale, Fwl to $A=5$ ) and the raw score fox the corresponding Stanford Achievement subtests were computed. The results are shown in Table 1.

Table 1			
Gorrelations between Semester Marks and Stanford Achievement Subscores, County A			
Subject	Stanford Sub-test		Correlation* $(\mathrm{N}=40)$
Literature	Para Meaning		. 817
Speiling	Spelling		.630
English	Language		.755
Mathematies	Arith. Computat		. 809
Mathematios	Arith. Goncepts		.855
Mathematics	Arith. Applicatl		.609
Social Studies	Social Studies		. 520
Science	Science		. 597

*Product-Moment Correlation: Garrett, H. E. and R. S. Woodworth, Statistics in Psychology and Education, sixth edition (New York: David McKay, 1966); p. 143

Additional performance data was available from a group of fifth grade students from Gounty E. The correlations between the data on marks (mathematics semester marks) and Achievenent Test Scores is shown in Table 2.

Table 2
Correlations between Semester Marks and Stanford Achievement Sub-scores, County E

Subject	Stanford   Sub-test	Corre1ation*   $(\mathrm{N}=180)$
Mathematics	Arith. Computations	.942
Mathematics	Arith. Concepts	.938
Mathematics	Arith. Applications	.942

*Product-Moment Correlation, see: Brough, T. G. Student Placement in Mathematics based on previous achievement (Lovelock, Nevada: Western Nevada Regional Education Center, March, 1970).

These correlations (especially those in Table 2) indicate a high degree of correlation between semester marks (teacher judgnent) and achievement on Stanford Sub-tests. With this as evidence for a connection between the two, an empirical equation was devised to link the marks received to the Stanford achievement scores (National percentile), National percentile was chosen as the measure to be predicted in order to free the resulting function from the grade level of performance,

After much trial and errox the following function resulted:

$$
\begin{aligned}
& P=k G(G-1) \\
& \text { Where } P=\text { percentile placement (individuals) } \\
& G=\text { sum of two auccessive semester marks } \\
& k=\frac{P_{m}}{G_{m}\left(G_{m}-1\right)}, \begin{array}{l}
\text { a constant for each local group } \\
\text { for each sub-test area }
\end{array} \\
& \text { in which } \\
& P_{m}=\text { Local mean for Stanford Achlevement Sub-test } \\
& G_{m}=\text { Local mean of semester marks } \\
& \text { (sum of two semesters) }
\end{aligned}
$$

The factor $k$ reflects differing performance levels on the Stanford Achievement Sub-tests for groupe of students (classroom to classroom, school to school, or county to cornty), and differing marking practices of classroom achievement levels for groups of students. This factor might be viewed as an educational quality loading factor for marks given.
applying equation (1) to the two sets of data available (County $A$ and 'Jounty E) we can check to see how successful the expression is. The first step is to compute values for the quality factor $k$. Using this factor and the recorded marks for each student, predicted Stanford Achievement Subtest scores were computed. These predicted scores were then averaged and then compared with the actual performance of these same students on the Stanford Achievement Sub-tests. The results of these calculations for the two counties are shown in Table 3:

Table 3
Predicted vs. Achieved Stanford Achievement Test Sub-Scores

Sub-test	$\begin{gathered} \text { (GPA) } \times 2 \\ (\mathrm{G}) \\ \hline \end{gathered}$	Quaitey Factor (k)	Mean of Achieved Scores ( $\mathrm{P}_{\mathrm{m}}, 7$ )	Mean of Predicted Scores ( $\mathrm{P}, \%$ )	Proportion within $\pm 15$ pts. (\%)	Proportion within proper Quartile (\%)
			County A			


Para. Mean.	6.60	1.24	45.8	51.3	35.0	52.5
Spelling	6.67	1.24	47.1	51.9	84.5	84.5
Language	6.25	1.27	41.6	45.7	55.0	70.0
Arith. Comp.	5.48	1.22	30.1	30.5	62.5	65.0
Arith. Conc.	5.48	2.05	50.4	45.2	67.5	70.0
Arith. App1.	5.48	1.74	42.7	41.5	68.5	57.9
Soc. Stu.	6.87	0.803	32.4	35.6	65.0	62.5
Science	6.64	$\underline{0.982}$	36.8	$\underline{39.9}$	47.4	65.8
Means (N=40):	6.18	1.32	40.9	42.7	60.7	66.0

County E

Arith Comp.	5.18	2.48	53.9	55.5	48.1	50.0
Arith Conc.	5.18	2.62	56.9	56.2	46.1	44.3
Arith Appl.	5.18	2.19	47.5	50.2	48.1	65.4
Means $(\mathrm{N}=52):$	5.18	2.43	52.8	53.9	47.4	53.2

Two criteria were used to judge success of these predictions: 1) The proportion of predicted scores that came within 15 points of the actual score, and 2) The proportion of predicted scores that fell within the same quartile as the actual score. The second criterion is more rigid than the first in that no spread of scores is allowed (the cut-off points are rigidly chosen at the 25 and 75 percent boundaries.

The results of the two criteria for County A show that:

1) the predicted scores fall within $\pm 15$ points of the achieved scores about $60 \%$ of the time (with a range of agreement of 35 to $84.5 \%$ ).
2) The predicted scores fall within the achieved quartile $66 \%$ of the time (with a range of agreement of 52.5 to $70 \%$ ).

For County E:

1) The predicted scores fall within $\pm 15$ points of the achieved scores about $47 \%$ of the time (with a small range of agreement of 46.1 to 48.1\%)
2) The predicted scores fall within the achieved quartile about $53 \%$ of the time (with a range of agreement of 44.3 to $65.4 \%$ ).

If we rearrange the data in Table 3 and place them in order of the calculated value of $k$ we get the following results:

## Table 4

Calculated Value				Rank Order			
$G$	k	$\mathrm{P}_{\mathrm{m}}$	P	G	k	Prin	P
6.87	0.803	32.4	35.6	11	1	2	2
6.64	0.982	36.8	39.9	9	2	3	3
5.48	1.22	30.1	30.5	. 5	3	1	1
6.60	1.24	45.8	51.3	8	4.5	6	8
6.67	1.24	47.1	51.9	10	4.5	7	9
6.25	1.27	41.6	45.7	7	6	4	6
5.48	1.74	42.7	41.5	5	7	5	4
5.48	2.05	50.4	45.2	5	8	9	5
5.18	2.19	47.5	50.2	2	9	8	7
5.18	2.48	53.9	55.5	2	10	10	10
5.18	2.62	56.9	56.2	2	11	11	11

From the rank order (low to high) indicated in the table we can calculate correlations between the various variables (Spearman-Rank Gorrelations)*. The resulting correlations are as follows:

		Probability Level	Percent of Variation
k vs. $\mathrm{P}_{\mathrm{m}}$ :	$r_{5}=0.891$	$\mathrm{p}<.01$	79.2
k vs. G :	$\mathrm{r}_{\mathrm{s}}=-0.843$	$\mathrm{P}<.01$	71.0
P vs. $\mathrm{P}_{\mathrm{m}}$ :	$\mathrm{r}_{\mathbf{s}}=0.864$	$\mathrm{P}<.01$	74.3
G vs. $\mathrm{P}_{\mathrm{m}}$ :	$r_{s}=-0.612$	$\mathrm{P}<.05$	37.5

Siegel, S., Nonparametric Statistics for the Behavioral Sciences (New York: McGraw-Hi11, 1956), pp. 202-213.

The above results indicate that the quality factor $k$ is an indication of student ability to score well on Stanford Achievement Subtests. They also show that the correlation between the predicted sub-test scores and the scores achieved utilizing the $k$ factor and Equation (1) is much higher than the correlation between the recorded marks and the sub-test scores. In fact the amount of variation in the sub-test scoxes accounted for has been increased from $37.5 \%$ to $74.3 \%$ by using $k$ and Equation (1). The quality factor $k$, accounts for nearby $80 \%$ of the variability among the Stanford Achievement sub-scores.

## METHOD

This method of estimating Stanford Achievement Test scores from marks given is relatively easy if a systematic calculation system is followed. A suggested procedure is given below.

1. Locate the Stanford Achievement Test means for the nearest comparable group of students. If the missing scores are a few students from a particular class or school at a particular grade level, choose the results for that group. If the missing scores are for students scattered throughout the district, choose the results for the whole district. Do not mix students of different grade levels.
2. Convert the averages to national percentiles.
3. Compute the average classroon performance (teacher marks) for the studente with Stanford Achievement Test results available. This should be done for each subject area fox which a corresponding Stanford Achievement Sub-test is available. Note: Paragraph Méning is a test of achievement in Literature, While Language is a test of achievement in English. The others are more or less obvious. The average performance should be computed on the basis of the total pexformance for two semesters (both semester grades), using $A=5$, $B=4, C=3, D=2, F=1$. The total achleved grades for each student would range from 2 to 10 , with averages for groups falling around 6.00.*

* If marks other than $A, B, C$ are used, such as $P$ or $F$, then gome estimate of the equivalency of these marks to $A, B, G$ must be made. If an isolated mark of $P$ or $F$ (or $S$ or $U$ ) is issued, then use: $P=3$, $F=1$, $S=3, U=1$. A plus or a minus will ralse or lower these equivalencies by I point. If only one semester's mark or one mark for the year is available, double this mark in the calculation.

4. Compute a quality factor for each sub-score utilizing the data of paragraphs 1, 2, 3 above, using the definition of the quality factor $k$, associated with Equation (1) above.
5. Compute Individual stanford Achievement Sub-scores for each student using this factor and the mark pexformance (two semesters) for each student by inserting these factors into Equation (1) above.

If overall (rather than individual sub-score) placement is desired, then the average of the battery of scores and the average of all corresponding marks should be used to get a national percentile and a mark average to compute a corresponding value of $k$ and then an overall percentile placement for each individual. Do not attempt to use this scheme to predict overall placement of groups with one calculation, since the nature of expression 1 guarantees an answer identical to the observed average. Average predicted performance must come from the average of each prediction.

It is recommended that this prediction scheme be used by interested parties in order to measure the overall predictive capability of Stanford Achievement Tests and of the quality factor, $k$. The author would be interested In any resuits obtained.

## OVERAGE STUDENTS

AND<br>STUDENTS IN LOWEST QUARTILE<br>DISTRICTS A, B, C, D, E, G, THIRD GRADE<br>TRANSPORTATION ANALYSES<br>FOR SMALL DISTRICT A AND LARGE DISTRICT E

## Apri1 15, 1971

Theodore G. Brough
Bery1.I. Riehm

220 Main Street
P.O. BOX 421

Lovelock, Nevada 89419
Te1. (702) 273 - 2631

## TABLE OF CONTENTS

Page
Summary ..... 1
Introduction ..... 2
District A ..... 3
District $B$ ..... 9
District C ..... 15
District D ..... 19
District E ..... 23
District $G$ ..... 30

The general trends revealed in this analysis of third grade performances in 7 rural counties are that the students who are overage or who place lowest in performance on the two Standardized tests are: students with learning disabilities, who speak a foreign language at home, are usually members of minority groups, are boys, and who live the furthest from school.

These findings reinforce similar findings in studies of 9 th grade students. The differences between the results for the 3 rd and 9 th graders are one of degree. The trends observed are generally more severe for 9 th graders than for 3rd graders and the general perfonnance in all categories for 9 th graders is generally much inferior to the general performance for 3rd graders.

## INTRODUCTION

This pamphlet continues the use of the Partial Student Profile, a computer-based report of data on each student stored in the Western Nevada Regional Education Center's Student Information System. By its very nature (a computer printout-one line per student) the Profile is compact and much of the information is coded. Printouts of the complete coded Information as it now exists for each student in the system are even more compact. Samples of this data (called Demonstration Data for discussion purposes) are included in a previous report in this series: Using Student Data From Computer Printouts, WN-REC, May 25, 1970. Wth a little experience, the codes can be learned and the information extracted for school analysis purposes. A discussion of how the data is handled to yield tables such as are in this memo is given in the above-mentioned publication.

Previous publications dealing with stident performance in these six county school districts in Western Nevada are;

Overage Students and Students in Lowest Quartile, Districts A, B, C, D, E, G, 9th grade (WN-REC, varlous dates: August 4, 1970 to September 30, 1970)

Using Student Data from Computer Printouts, (WN-REC, May 25, 1970) also deals with County $G$ (overage and lower quartile placement only - no transportation analysis).

District A

Table I summarizes selected information for third grade stadents classified according to placement in overage or non-overage groups. Students will be considered overage if their birthdays fall before January 1, 1961. The Table reveals the following trends:

1. A tendency toward a larger incidence of learning disabilities the more overage the student (9.5\% for non-overage to $28.6 \%$ for overage over 6 months).
2. An increase in proportion of children reporting a foreign language spoken at home with increasing overage placement.
3. An increase in proportion of students from families with professional and unskilled fathers with increasing overage placement (falls off for oldest group), and a decrease for students from families with self-employed and skilled fathers (falls off for the oldest group).
4. A tendency toward an increase in proportion of Spanish Americans with increasing overage placement (not complete).
5. A decrease in proportion of girls with overage placement.
6. A slight tendency toward a decrease in proportion of students who walk or ride bike with increasing overage placement and a similar increase for students who ride bus, car or other to school.
7. A decrease in time to school for students with increasing overage placement. This decrease holds for students overall as well as for students when classified by transportation method. It is most pronounced for students who walk or ride bike to school.
8. A rapid decrease in proportion of students who eat a hot cafeteria lunch with increasing overage placement. There are corresponding increases in the proportion of students who have box Iunch or lunch-other.
9. A rapid decrease in Standardized test scores with increasing overage placement. This is true for both Standardized tests listed: Paragraph Meaning and Arithmetic Computation.

In Summary: Students who have a tendency to be overage and place in. the lowest performance categories are: students with learning disabilities, who speak a foreign language at home, who are Spanish-Americans, who are boys, who ride bus or car to school, who walk or bike a short distance to school and who do not eat a hot cafeteria lunch.

District A, 3rd Grade Overage vs. Non-Overage

	Percent Overage Over 6 mos. ( $\mathrm{N}=7$ )	Percent Overage Group ( $\mathrm{N}=13$ )	Percent Total Population ( $\mathrm{N}=55$ )	```Percent Non-Overage Population (N=42)```
Learning Limitations: (Yes only)	28.6(2)	23.1(3)	12.7(7)	9.5 (4)
Foreign Language Spoken at Home (Yes only) :	28.6(2)	23.1(3)	9.1(5)	4.8 (2)
Male Parent: missing, step-parent or other	0 (0)	O(0)	14.5(8)	O(0)
Occupation of Male Parent:*				
Professional	O(0)	15.4(2)	9.1(5)	7.1(3)
Self-Employed	14.3 (1)	7.7 (1)	14.5 (8)	16.7(7)
Skilled	57.2 (4)	$38.5(5)$	56.4 (31)	61.9(26)
Unskilied	28.6 (2)	38.5 (5)	20.0(11)	14.3 (6)
Unemployed	O(0)	0 (0)	0 (0)	0 (0)
No Response	14.3 (1)	$7.7(1)$	1.8 (1)	2.4(1)
Students:				
Spanish-Amexican	14.3(1)	15.4(2)	12.7(7)	0 (0)
Indian	0 (0)	O(0)	$1.8(1)$	2.4 (1)
Black	0 (0)	O(0)	0 (0)	$0(0)$
Oriental, Other	0 (0)	0 (0)	0 (0)	O(0)
Gixl Students	28.6(2)	38.5(5)	$54.5(30) *$	57.1 (24)
Transportation Type:				
Walk or Bike	57.2(4)	53.9 (7)	58.2(32)	$58.5(25)$
Bus, Car or Other	42.8 (3)	46.1(6)	41.8(23)	41.5 (17)
Transportation Time (min.) :				
Overall	11.7 (7)	11.7(13)	13.6(55)	14.2(42)
Walk or Bike	5.5(4)	$4.6(7)$	7.3 (32)	8.1 (25)
Bus, Car or Other	20.0(3)	20.0 (6)	22.4 (23)	23.2(17)
Lunch Type:				
School - Hot	14.3 (1)	$34.0(4)$	50.9 (28)	
School Pays	0(0)	0 (0)	$0(0)$	$\theta(0)$
Home Pays	100.0(1)	100.0(4)	100.0(28)	100.0(24)
School - Box	28.6(2)	23.1(3)	21.8(12)	2I.5(9)
None:	O(0)	0 (0)	0(0)	O(0)
Other:	$57.2(4)$	46.1 (6)	27.3(15)	21.5(9)
Average Score Stanford Subtest (percentile):				
Paragraph Meaning	20.4(7)	22.9 (13)	40.9(56)*	$46.3(42)$
Arith. Comp.	35.4(7)	34.8(13)	$56.3(56) *$	62.8(42)

* 1 girl student Standardized test scores only.
* When male parer is missing, female parent occupation is substituted

Table 2 summarizes selected information for students classified on the basis of their performance on the Stanford Achievement sub-tests: Paragraph Meaning (PA) and Arithmetic Computation (AR). The Table reveals the following trends:

1. An increase in the proportion of students with learning limitations with decreasing quartile plaesment.
2. An increase in proportion of overage students with decreasing quartile placement.
3. A rapid increase of proportion of students who speak a foreign language at home with decreasing quartile placement.
4. A tendency toward an increase in proportion of students with missing, step- or other male parents with decreasing quartile placement.
5. A decrease in proportion of students with self-employed fathers and an increase in proportion of students with skilled and unskilled fathers with decreasing quartile placement.
6. A tendency toward an increase in proportion of Spanish-American and Indian students with decreasing quartile placement.
7. A rapid decrease in proportion of girls with decreasing quartile placement.
8. An increase in time to school for students travelling by bus, car and other with decreasing quartile placement.
9. A decreasing proportion of students eating school hot lunch with decreasing quartile placement.

District A, 3rd Grade Lowest Quartile Students vs. Others

	Percent   Lower Q $(\mathrm{N}=21)$	Percent Total Population ( $\mathrm{N}=55$ )	Percent   Middle   Q Groups $(\mathrm{N}=18) *$	Percent Upper 3/4 Group $(\mathrm{N}=35) \%$	Perceryt   Upper:'4 Group ( $\mathrm{N}=17$ )
Learning Limitations (Yes only):	23.8 (5)	12.7(7)	11.1(2)	5.7 (2)	$0(0)$
Overage:					
Up to 6 months	23.8(5)	10.9 (6)	0 (0)	2.9 (1)	5.9(1)
6 to 12 months	23.8(5)	12.7(7)	11.1(2)	$5.7(2)$	0 (0)
Foreign Language Spoken at Home (Yes only)	19.1(4)	9.1(5)	5.5(1)	2.9 (1)	0(0)
Male Parent: Missing, Step, or Other	23.8(5)	14.5 (8)	5.5(1)	8.6(3)	11.7(2)
Occupation of Male Parent:+					
Professional	9.5(2)	9.1(5)	5.5 (1)	8.6(3)	17.7(3)
Self-Employed	9.5(2)	14.5(8)	11.1(2)	17.1(6)	23.5 (4)
Skilled	57.1(12)	56.4(31)	66.6 (12)	$57.1(20)$	41.2(7)
Unskilled	23.8(5)	20.0(11)	16.7 (3)	17.1(6)	17.7 (3)
Unemployed	0(0)	O(0)	0 (0)	0 (0)	0 (0)
Students:					
Spanish-American	23.8(5)	12.7(7)	5.5(1)	8.6(3)	11.7(2)
Indian	4.8(1)	1.8(1)	0 (0)	$0(0)$	0 (0)
Black	0 (0)	0 (0)	0 (0)	0 (0)	0(0)
Oriental, Other	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Girl Students**	38.1(8)	54.5(30)	50.0(9)	62.9(22)	76.5 (13)
Transportation Type:					
Walk or Bike	61.9(13)	58.2(32)	44.4(8)	54.3(19)	64.7 (11)
Bus, Car or Other	38.1(8)	$41.8(23)$	55.5(10)	45.7(16)	35.3(6)
Transportation Time (min.) :					
Overall	12.6(21)	13.6(55)	22.2(18)	14.1(35)	10.0(17)
Walk or Bike	6.1(13)	7.3(32)	10.0 (8)	8.2(19)	6.8 (11)
Bus, Car, or Other	23.1(8)	22.4(23)	17.0(10)	21.2(16)	15.8 (6)
Lunch Type:					
School - Hot	33.3(7)	50.9(28)	$66.7(12)$	62.9(22)	58.9 (10)
School Pays	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Home Pays	100.0(7)	100.0(28)	100.0(12)	100.0(22)	100.0(10)
School - Box	14.3(3)	21.8(12)	22.2(4)	25.4(9)	29.4 (5)
None	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Other	52.4(11)	27.3(15)	11.1(2)	11.4 (4)	11.7(2)
Average Score Stanford					
Subtest (percentile):					
Paragraph Meaning	20.2(21)	40.9(56)**	40.3(19)	52.4(36)	65.9(17)
Arith. Comp.	35.2 (21)	56.3(56) **	54.0(19)	69.2 (36)	86.3(17)

* 1 student was in both LQ and UQ.
**1 girl student has Standardized test scores only.
RIC ${ }^{n}$ male parent is missing, female parent occupation is substituted.


# STUDENT PERFORMANCE AND OTHER CHARACTERISTICS AS A FUNCTION OF RESIDENCE AREA 

District A

If students are identified as coming to school from one particular town or part of a given town then some patterns emerge. Organizing the data on the basis of residence and ranking the groups according to the proportion of overage students in each residence area results in the pattern shown in Table 3. The order of residence areas is same as the previous ranking for this county (District A, 9th grade, August 4, 1970).

Table 3 shows the following:

1. An increase in proportion of students placing in the lower quartile with increasing overage proportion in the commuities.
2. A tendency toward an increase in proportion of ethnics with increa sing distance from school.
3. A tendency toward a decrease in overall performance in Paragraph Meaning with distance from school (one exception).

A11 other trends are mixed. For these third graders, the students doing best are students living on the edge of town, followed by the group living closest to school and the farthest out group doing worst. The ring effect observed in the study of 9 th graders in this county still holds true: the group the furthest distance out generally does the worst (in Paragraph Meaning) but for Arithmetic Computation, they are not seriously behind.


OVERAGE Vs. NON-OVERAGE STUDENTS
District B

Table 4 summarizes the selected information for third grade students classified according to placement in overage or non-overage groups. Students will be considered overage if their birthdays fall before January 1, 1961. The table reveals the following trends.

1. A tendency toward a largex incidence of learning disabilities with increasing overage placement.
2. An increase in proportion of students reporting a foreign language spoken at home with increasing overage placement.
3. A decrease in proportion of male parents reported as missing, step-, or other with increasing student overage placement.
4. An increase in proportion of students from families with professional, skilled, and unemployed fathers with increasing age placement and a decrease in proportion of students with self-employed fathers with increasing age placement. The proportion of children with unskilled fathers remains remarkably stable with increasing overage placement.
5. An increase in proportion of Spanish-American students with increasing age placement. For other minority students the trend is toward a decrease in proportion with increasing age placement.
6. A decrease in proportion of girls with increasing age placement.
7. A strong trend toward an increasing proportion of students who walk or ride bike with increasing age placement.
8. A decrease in the time traveled with increasing age piacement. A decrease in the time traveled for students traveling by bus, car, or other with increasing age placement, while the time increases slightly with increasing age placement for students who walk or bike.
9. An increase in proportion of students with School Hot Lunch with increasing age placement, and a corresponding decrease in proportion of students having box lunch with increasing age placement. The proportion of students having lunch-other increases with increasing overage placement. The proportion of students with hot and box lunch remains roughly constant with increasing age placement (falls off for the oldest group).
10. A general crend toward decreasing overage percentile placement In the Stanford Achievement test scores with increasing age placement. This trend falls off for the youngest age group for Paragraph Meaning and for the oldest age group for Arithmetic Computation.

In summary: Students who have a tendency to be average and place lowest on Standardized tests are: students with learning disabilities, who speak a foreign language at home, who have professional, skilled or unemployed fathers, who are Spanish-American (but not Indian or Oriental), who are boys, who walk or ride bike to school, who travel the furthest, and who have lunch-other.

Table 4
District $B$, 3rd Grade
Overage vs. Non-Overage

Percent	Percent	Percent	Percent	
Overage	Overage	Overage	Total	Percent
over 12 mos.	over 6 mos.	Group	Population	Non-0verage
$(\mathrm{N}=2)$	$(\mathrm{N}=9)$	$(\mathrm{N}=27)$	$(\mathrm{N}=138)$	$(\mathrm{N}=111)$

Learning Limitations
(Yes only):
Foreign Language spoken at Home (Xes only):
$50.0(1)$
11.1(1)
$25.9(7)$
13.1(18) 9.9(11)
$0(0)$

Male Parent: missing,
step-parent or other
Occupation of Male Parent:+

Professional
Self-Employed
skilled
Unskilied
Unemployed
Students:
Spanish-American
Indian
BLack
Oriental, Other
Girl Students

Transportation Type:
Walk or Bike
Bus, Car or Other
Transportation (min.):
Overall
Waik or Bike
Bus, Car or Other
Lunch Type:
School - Hot
School Pays
Home Pays
School - Box
None
Other

Average Score Stanford ++
Subtest (percentile): Paragraph Meaning* Arithmetic Comp. ${ }^{\text {* }}$

$6.0(2)$	$13.9(9)$
$83.5(2)$	$50.5(9)$

24.6(25)
38.1(155) 35.8(130)

* 17 Students Names and Scores only.
** 16 Students Names and Scores only.
+ When male parent is missing, female parent occupation is substituted.
++2 Students with no Stanford scores.

Table 5 summarizes selected information for students classified on the basis of performance on the Stanford Achievement sub-tests: Paragraph Meaning (PA) and Arithmetic Computation (AR). The table reveals the following trends:

1. An increase in the proportion of students with learning limitations with decreasing quartile placement.
2. A trend toward a decrease in the proportion of overage students with decreasing quartile placement.
3. An increase in proportion of students having a foreign. language spoken at home with increasing quartile placement.
4. An increase in the proportion of students with missing, step-, or other parent with decreasing quartile placement.
5. A decrease in proportion of students with fathers selfemployed or skilled with decreasing quartile placement, but an increase in proportion of students with Eathers who are professional, unskilled, or unemployed.
6. A rapid increase in the proportion of students who are Indian with decreasing quartile placement. There is a mixed trend for Spanish-American students: a decrease in proportion of students with decreasing quartile placement from mid-quartile on down, but with a decrease also with increasing quartile placement for mid-quartile on up.
7. An overall trend toward a decrease in proportion of students who walk or bike to school with decreasing quartile placement.
8. A general overall trend toward increasing time to school with decreasing quartile placement (the highest quartile students travel the least time). However, from the middle quartiles on down the trend is toward decreasing time traveled. These same trends hold true for students who walk or bike and for students who ride bus, car or other to school.
9. A rapid increase in proportion of students with school hot lunch with decreasing quartile placement, and a general decrease in proportion of students having box lunch at school. The proportion of students having either hot lunch or box Iunch at school decreases with quartile placement for the mid-quartile
groups on down, but also decreases for the mid-quartile groups on up. The proportion of students with lunch-other increases slightly with decreasing quartile placement (mid-quartile down) and also with increasing quartile placement (mid-quartile up).
10. The average performance of students decreases with decreasing quartile placement on both performance measures (Paragraph Meaning and Arithmetic Computation).

Table 5
District B, 3rd Grade Lowest Quartile Students vs. Others

	Percent   Lower Q   ( $\mathrm{N}=43$ ) *	Percent Total Population ( $\mathrm{N}=138$ )*	Percent Middle Q Groups $(\mathrm{N}=47) * \%$	$\begin{gathered} \text { Percent } \\ \text { Upper } 3 / 4 \\ \text { Group } \\ (\mathrm{N}=98) * * \\ \hline \end{gathered}$	```Percent Upper 1/4 Group (N=51)*```
Learning Limitations (Yes only):	7.0(3)	13.1(18)	12.8(6)	15.3(15)	17.7 (9)
Overage:					
Up to 6 months	2.3(1)	13.1(18)	$27.7(13)$	18.4(18)	9.8(5)
6 to 12 months	0 (0)	5.1 (7)	12.8(6)	8.2(8)	3.9 (2)
12 months and over	0 (0)	1.4 (2)	2.1(1)	2.0(2)	2.0 (1)
Foreign Language Spoken at Home (Yes only):	30.0(13)	18.1(25)	$19.2(9)$	-3.3(13)	7.9(4)
Male Parent - missing, step-parent, other:	25.6(11)	19.6(27)	19.2(9)	16.3(16)	13.7 (7)
Occupation of Male Parent: ${ }^{+}$					
Professional	7.0(3)	3.6(5)	0 (0)	2.0 (2)	3.9(2)
Self-Employed	13.9(6)	24.6(34)	29.8 (14)	28.6 (28)	27.5 (14)
Skilled	16.3(7)	23.2(32)	19.2(9)	26.6(26)	33.4(17)
Unskilled	50.8(24)	44.9(62)	46.9 (22)	40.8(40)	35.3(18)
Unemployed	7.0 (3)	3.6(5)	4.2(2)	2.0(2)	0 (0)
Students:					
Spanish-American	7.0(3)	8.0 (11)	12.8(6)	9.2(9)	5.9(3)
Indian	34.9(15)	13.8(19)	8.5(4)	$4.1(4)$	$0(0)$
Black	O(0)	0 (0)	0 (0)	0 (0)	$0(0)$
Oriental, Other	O(0)	0.7 (1)	$0(0)$	1.0 (1)	$2.0(1)$
Girl Students	51.1(22)	60.1 (83)	57.5(27)	64.3(63)	70.6(36)
Transportation Type:					
Walk or Bike	44.2(19)	50.7(70)	46.9(22)	54.1(53)	60.8(31)
Bus, Car or Other	50.8 (24)	49.3(68)	55.3 (26)	46.9(46)	39.2(20)
Transportation Time (min.) :					
Overall	14.0(43)	14.2(138)	$17.7(47)$	$14.1(98)$ $10.2(53)$	$10.9(51)$ $9.1(31)$
Walk or Bike	9.3(19)	10.0(70)	$11.7(22)$	$10.2(53)$	9.1(31)
Bus, Car or Other	17.8(24)	18.4(68)	22.9(25)	18.8(45)	13.6 (20)
Lunch Type:					
School - Hot	44.2(19)	31.8(44)	29.8(14)	25.5(25)	21.6(11)
School Fays	57.9 (11)	34.1 (15)	7.1(1)	16.0 (4)	27.3 (3)
Home Pays	42.1 (8)	$65.9(29)$	$92.9(13)$	84.0 (21)	72.7 (8)
School - Box	25.6(11)	39.8(55)	51.1 (24)	46.9(46)	43.2(22)
None	0 (0)	0 (0)	0 (0)	O(0)	0 (0)
Ocher	30.2(13)	28.4(39)	21.3(10)	27.6(27)	33.4(17)
Average Score Stanford					
Subtest (percentile) :					
Paragraph Meani ag	19.9 (45)	38.1(155)	28.6 (57)	44.8(113)	61.2(56)
Arithmetic Comp.	28.1(45)	49.6(1.54)	32.6(56)	59.4(112)	86.1(56)

* 17 students, names and scores only; 2 in Lower Quartile; 5 in Upper Quaxtile. ** 3 students in both Upper and Lower Quartile
ERIC male parent is missing, female parent occupation is substituted.

OVERAGE Vs. NON-OVERAGE STUDENTS

## District C

Table 6 summarizes selected information for third grade students classified according to placement in overage or non-overage groups. Students will be considered overage if their birthdays fall on or before December 31, 1960. The Table reveals the following trends in District $C$ :

1. An increasing tendency toward a larger percentage of students with learning disabilities the more overage the child (fiom 6.2 for non-overage to $60 \%$ for overage over 12 months). A decrease of percentage of professional, self-employed, and skilled with overage placement.
2. No children of professional parents overage by 12 months; same for self-employed.
3. An increase in proportion of children with unskilled fathers with increasing overage category. An increase in proportion of children who speak foreign language at home.
4. An increase in proportion of Spanish-American children with increasing overage category. A decrease in proportion of ethnic students with increase in overage category for Indians, Blacks and Others.
5. A decrease in proportion of girls with increasing overage category.
6. A slight increase in time traveled by bus or car as overage category increases.
7. An increase in proportion of students who ride to school with increasing overage category.
8. An increase in proportion of students with school-paid hot lunch with increasing overage category.
9. An increase in proportion of students who have Iunch-other with increasing overage category.
10. A rapid decrease in Paragraph Meaning scores with increasing overage category.
11. An increase in Arithmetic Computation scores with increasing overage category.

Table 6

District C, 3rd Grade Overage vs. Non-overage					
	Percent Overage Over 12 mos. ( $\mathrm{N}=5$ )	Percent Overage Over 6 mos. ( $\mathrm{N}=13$ )	Percent Overage Group ( $\mathrm{N}=30$ )	Percent Total* Population ( $N=126$ )	Percent Non-overage $\qquad$ $(\mathrm{N}=97)$
Learning Limitations (Yes only)	60.0 (3)	23.1 (3)	10.0 (3)	7.1 (9)	$6.2(6)$
Foreign Language Spoken at Home (Yes only)	O(0)	7.7 (1)	$6.7(2)$	8.7(11)	9.3 (9)
Male Parent: missing, step-parent or other	0 (0)	O(0)	0 (0)	18.3(23)	23.7 (23)
Occupation of Male Parent:+ Professional				1	
Self-Employed	O(0)	$0(0)$	0(0)	11.1(14)	$12.4(12)$ $4.1(4)$
Skilled	40.0 (2)	30.8 (4)	40.0(12)	52.4(66)	55.6(54)
Unskille 1	60.0 (3)	61.5(8)	50.0 (15)	26.2(33)	18.6(18)
Unemployed	O(0)	0 (0)	3.3 (1)	7.1 (9)	8.2 (8)
Students:					
Spanish-American	20.0(1)	15.4 (2)	10.0(3)	9.5 (12)	9.3 (9)
Indian	0 (0)	0 (0)	$6.7(2)$	9.5 (12)	10.3(10)
Black	0 (0)	7.7 (1)	$6.7(2)$	10.3(13)	11.3 (11)
Oriental	0 (0)	0 (0)	0 (0)	O(0)	0 (0)
Other	0(0)	0 (0)	3.3 (1)	4.0 (5)	4.1 (4)
Gir1 Students	20.0(1)	47.1(6)	33.3(10)	56.4(71)	$62.9(61)$
Transportation Type:					
Walk or Bike	60.0 (3)	61.5(8)	73.4(22)	70.6(89)	69.1(67)
Bus or Car	40.0 (2)	$30.8(4)$	23.3(7)	27.8(35)	27.9(28)
Other	$0(0)$	7.7 (1)	3.3 (1)	1.6 (2)	1.0 (1)
Transportation Time (Min.)					
Overall	$11.0(5)$	9.8 (13)	9.6 (30)	11.4(126)	$12.0(96)$
Walk or Bike	8.3(3)	8.7 (8)	8.6(22)	10.5 (89)	11.1 (67)
Bus, Car or Other	15.0(2)	11.6 (5)	12.4(8)	13.6(37)	14.0(29)
Lunch Type:					
School - Hot:	20.0 (1)	30.8 (4)	30.0 (9)	47.8(54)	46.4(45)
School Pays	0 (0)	50.0 (2)	$44.5(4)$	$22.2(12)$	17.8(8)
Home Pays	100.0(1)	50.0 (2)	55.5 (5)	$77.8(42)$	82.2 (37)
School - Box	$40.0(2)$	45.6 (6)	33.3 (10)	33.3(42)	33.0 (32)
None	$0(0)$	$0(0)$	$0(0)$	$0(0)$	$0(0)$
Other	40.0 (2)	23.1(3)	$33.3(10)$	$23.8(30)$	20.6(20)
Average Score Stanford	-		-		
Subtest (percentile):					
Paragraph Meaning	29.3(3)	37.6 (11)	50.7(27)	60.5 (132)	$63.0(105)$
Arith. Comp.	74.0 (3)	63.8 (11)	69.5 (27)	$65.0(132)$	63.9 (105

* 11 students no Birthdates.
+ When male parent is missing, female parent occupation is substituted.

District $C$

Table 7 summarizes selected information for students classified on the basis of performance on the Stanford Achievement sub-tests: Paragraph Meaning (PA) and Arithmetic Computation (AR). The table reveals the following trends:

With decreasing quartile placement:

1. An increase in learning limitatiuns.
2. A tendency toward an increase in proportion of students over 12 months overage.
3. An increase in proportion of students with professional or unemployed fathers, but a decrease in proportion of children with self-employed, skilled and unskilled fathers.
4. An increase in proportion of Spanish-American, Black, and Other students (almost $50 \%$ of the Black students are in the lowest quartile) : A decrease in proportion of Indians.
5. An increase in proportion of students who walk or ride bike.
6. A sifght increase in time to school (overali). An increase in time to school for students who walk or ride bike.
7. An increase in the proportion of sstudents who have hot school Iuncl A very slight increase in the proportion of students who have box lunch. A decrease in the proportion of students who have 1unch-other.
8. A decrease in average student performance on both sub-tests with decreasing quartile placement.

Table 7
District C, 3rd Grade
Lowest Quartile Students vs. Others

	Percent	Percent	Percent	Percent
Percent	Total	Middle	Upper 3/4	Upper 1/4
Lower Q	Population	Q Groups	Group	Group
$(\mathrm{N}=17)$	$(\mathrm{N}=126)$	$(\mathrm{N}=41)$	$\mathrm{N}=108)$	$(\mathrm{N}=67)$


Hearing Limitations (Yes only):	11.8 (2)	7.1 (9)	12.2(5)	6.5(7)	3.0 (2)
Overage: $\quad \cdot \mathrm{l}$					
Up to 6 mos .	5.9(1)	13.5(17)	$9.7(4)$	14.8(16)	17.9 (12)
6 to 12 mos.	5.9 (1)	6.3 (8)	12.2(5)	6.5 (7)	$3.0(2)$
12 mos. and over	$5.9(1)$	3.4(5)	7.3 (3)	3.7 (4)	1.5(1)
Foreign Language Spoken at Home (Yes only)	29.4(5)	8.7(11)	7.3 (3)	5.6 (6)	4.5 (3)
Male Parent: Missing, Step, or Other	5.9..)	18.3(23)	22.0(9)	20.4 (22)	19.4 (13)
Occupation of Male Parent: + 7 -3(3) 8.0(6)					
Professional	29.4(5)	11.1(14)	7.3(3)	$8.4(9)$ $3.7(4)$	4.5 (3)
Self-Employed	0 (0)	0.3 (4)	$2.4(1)$ $43.9(18)$	$3.7(4)$ $55.5(60)$	59.8(40)
Skilled	41.2(7)	52.4(66)	$43.9(18)$	$55.5(60)$	59.8(40)
Unskilled	17.6 (3)	26.2 (33)	36.6(15)	27.8 (30)	22.4 (15)
Unemployed	11.8(2)	7.1 (9)	9.7 (4)	6.5 (7)	4.5(3)
Spanish-American	17.6(3)	9.5(12)	4.9 (2)	8.3 (9)	10.4 (7)
Indian	5.9 (1)	9.5 (12)	12.2(5)	11.1(12)	10.4(7)
Black	35.3(6)	10.3(13)	7.3 (3)	$6.5(7)$	$6.0(4)$
Oriental	0 (0)	O(0)	0 (0)	0 (0)	0 (0)
Other	$5.9(1)$	4.0 (5)	2.4(1)	3.7 (4)	4.5 (3)
Girl Students	47.0(8)	56.4.71)	51.3 (21)	58.3 (63)	62.7 (42)
Transportation Type: 70					
Walk or Bike	70.6(12)	70.6(89)	65.9 (27)	$69.9(77)$	74.6(50)
Bus, Car or Other	29.4 (5)	29.4(37)	34.1 (14)	30.1 (33)	25.4(17)
Transportation Time (Min.) : 10 10.8(67)					
Overall	14.7(17)	11.4(126)	11.3(41)	10.8 (110)	10.8(67)
Walk or Bike	15.8(12)	10.5 (89)	8.6(27)	9.7 (77)	10.2(50)
Bus, Car or Other	12.0 (5)	13.6(37)	16.0(14)	13.6(33)	12.6(17)
School - Hot:	47.0(8)	47.8(54)	43.9 (18)	$43.5(4.7)$	$38.8(26)$
Sctool Pays	12.5(1)	22.2 (12)	22.2 (4)	23.4(11)	$26.9(7)$
Home Pays	77.5 (7)	$77.8(42)$	77.8 (11)	76.6 (36)	73.1 (19)
School - Box:	35.3(6)	33.3 (42)	34.2(14)	33.3 (36)	32.8 (22)
None	O(0)	0 (0)	0 (0)	0 (0)	0(0)
Other	17.6 (3)	23.8 (30)	22.0 (9)	25.0(27)	25.4(17)
Average Score Stanford					
Subtest (percentile):					
Paragraph Meaning	37.0(21)*	$60.5(132)$ $65.0(132)$	$50.4(39)$	$64.5(112)$ $72.8(112)$	$82.9(73) * *$
Arith. Comp.	24.5(21)*	. $65.0(132)$	49.4 (39)	72.8(112)	82.9(73)**
cudents name and score tudents name and score   + When male parent is missi	$\begin{aligned} & \text { only - Lop } \\ & \text { only - Up } \\ & \text { g, female } \end{aligned}$	Quartile. Quartile. ent occupat	is subst	ed.	

Table 8 summarizes selected information for third grade students classified according to placement in overage or none overage groups. Students will be considered overage if their birthdays fall before January 1, 1961. The table reveals the following trends:

With increasing overage placement:

1. An increase in proportion of overage students (falls off for students more than six months overage).
2. An increase in proportion of students speaking a foreign language at home (falls off at over six months overage).
3. A general increase in proportion of students with male parent missing, step-, or other (the non-overage students do not quite follow this pattern).
4. A general decrease in proportion of students with professional, self-employed, or skilled fathers (the total overage group does not follow this pattern).
5. A general increase in proportion of students with unskilled or unemplayed fathers.
6. A general increase in proportion of students who are SpanishAmerican or Indian, a general deerease for other minority students: Black and Oriental.
7. A decrease in proportion of girls.
8. A trend toward a decrease in proportion of students who walk or ride bike, and a corresponding increase for those transported by bus or car.
9. A trend toward an increase in time to school overall (falls off for oldest group).
10. A decrease followed by an increase in time to school for both walk or bike and bus or car students.
11. A trend toward a decrease (fluctuates) in the proportion of students who have hot lunch and who have box lunch. An increase in proportion of students reporting no lunch.
12. A decrease in average performance on both achievement sub-tests.

District D, 3rd Grade
Overage vs. Non-overage

	Percent: Overage Over 12 mos. ( $\mathrm{N}=6$ )	Percent Overage Over 6 mos. ( $\mathrm{N}=24$ )	Percent Overage Group ( $\mathrm{N}=74$ )	```Percent Tota1 Population (N=334)```	Pervent Non-overage $(N=227)$
Learning Limitations (Yes only)	0(0)	20.8(5)	21.6(16)	12.0(40)	10.6(24)
Foreign Language Spoken at Home (Yes only)	O(0)	4.2(1)	5.4(4)	2.7(9)	2.2(5)
Male Parent: missing, step-parent or other	50.0(3)	32.4(8)	20.3(15)	20.4(68)	23.3(53)
Occupation of Male Parent:*					
Professionel	0 (0)	8.3(2)	14.9(11)	17.7(59)	21.1(40)
Self-Employed	0 (0)	4.2 (1)	12.2 (9)	10.2(34)	11.0 (25)
Skil1ed	100.0(6)	25.0 (12)	37.8 (28)	38.9(130)	45.0(102)
Unskilled	$0(0)$	12.5 (6)	29.8 (22)	18.9(63)	18.0(41)
Unemployed	0 (0)	6.3 (3)	5.4(4)	3.9 (13)	4.0(9)
Students:					
Spanish-American	0 (0)	8.3(2)	2.7(2)	2.6(8)	2.6(6)
Indian	33.3(2)	16.7 (4)	14.9(11)	6.8(23)	$5.5(12)$
Black	0 (0)	0 (0)	0 (0)	0.6 (2)	0.9 (2)
Oriental	$0(0)$	0 (0)	1.4(1)	1.5 (5)	1.7 (4)
Girl Students	0 (0)	29.2(7)	32.4(24)	49.4(151)	55.9 (127)
Transportation Type:					
Walk or Bike	40.0(2)	41.7(10)	39.2(29)	54.0 (162)	58.6(133)
Bus or car	60.0(3)	54.2 (13)	58.1(43)	46.0 (138)	41.4(94)
Transporation Time (Min.) :					
Overall	17.0(5)	23.4(23)	15.0(72)	13.9(300)	13.6 (228)
Walk or Bike	10.0 (2)	10.5(10)	9.0 (29) ${ }^{\text {c }}$	9.4(162)	9.4(133)
Bus or Car	21.7(3)	17.5 (13)	19.1 (43)	19.2(138)	19.3 (95)
Lunch Type:					
School- Hot:	40.0(2)	33.3(8)	43.3(32)	37.4(125)	40.9(93)
School Pays	0 (0)	37.5(3)	15.6(5)	14.3(7)	2.3 (2)
Home Pays	100.0(2)	62.5 (5)	84.4(27)	85.7(118)	97.7(91)
School - Box	20.0 (1)	25.0 (6)	33.8(25)	32.0(107)	36.1 (82)
None	20.0(1)	4.2(1)	$1.4(1)$	2.7(9)	3.5 (8)
Other	20.0 (1)	33.3 (8)	17.6(13)	17.1(57)	19.4(44)
Average Score Stanford   Subtest (percentile):					
Paragraph Meaning	22.6(5)	38.2(23)	43.6 (63)	59.8(307)	63.7(24i)
Arithmetic Computation	49.4(5)	56.5(23)	57.9 (63)	66.3(303)	$68.7(240)$

+ Whe: male parent is missing, female parent occupation is substituted.


## District D

Table 9 summarizes selected information for students classified on the basis of performance on the Stanford Achievement sub-tests: Paragraph Meaning (PA) and Arithmetic Computation (AR). The table reveals the following trends:

With decreasing quartile placement:

1. An increase in proportion of students reporting learning Iimitations.
2. An increase in proportion of students overage up to six months and students overage by 12 months and over. The students overage by six to 12 months decrease and then increase with decreasing quartile placement.
3. A trend toward an increasing proportion of students with forefgn language spoken at home.
4. A trend toward an increase in proportion of students with male parent missing, step-, or othex (trend reverses at upper portion).
5. A decrease in proportion of students with professional and selfpmployed fathers, and an increase in proportion of students with skilled, unskilled and unemployed fathers.
6. A trend toward an increase in proportion of Indian students; no trend for other minorities.
7. A decrease in proportion of girl students (from middle quartile on down).
8. The proportion of students who walk or ride bike remains relatively stable for each quartile group; the time to school remains relatively stable regardless of transportation type.
9. A trend toward a decrease it proportion of stuannts with box lunch and with no lunch.
10. A decrease in average performance on both standardized test sub-scores.

District D, 3rd Grade
Lowest Quartile Students vs. Others

	Percent	Percent	Percent	Percent
Percent	Total	Middle	Upper 3/4	Upper 1/4
Lower Q	Population	Q Groups	Group	Group
$(N=61)$	$(N=334)$	$(N=95) *$	$(N=280) *$	$(N=185)$

Learning Limitations (Yes only):

Overage:
Up to 6 mos.
6 to 12 mos.
12 mos. and over
$14.8(9)$
$4.9(3)$
$15.0(50)$

$16.4(10)$	$12.0(40)$	$15.8(15)$	$11.1(31)$	$8.6(16)$
$21.3(13)$	$15.0(50)$	$21.1(20)$	$13.2(37)$	$9.2(17)$
$14.8(9)$	$5.4(18)$	$1.1(1)$	$3.2(9)$	$4.3(8)$
$4.9(3)$	$1.8(6)$	$1.1(1)$	$1.1(3)$	$1.1(2)$
$3.3(2)$	$2.7(9)$	$5.3(5)$	$2.5(7)$	$1.1 .(2)$
$29.7(18)$	$20.4(68)$	$16.9(16)$	$18.2(51)$	$18.9(35)$

Foreign Language Spoken at Home (Yes only):

Male Parent: Míssing, Step or Other

Occupation of Male Parent:+ Professional Self-Employed
Skilled
Unskilled
Unemployed
Students:
Spanish-American
Indian
Black
Oriental, Other
Girl Students

Transportation Type:
Walk or Bike
Bus, Car or Other
Transportation Time (Min.): Qverall
Walk or Bike
Bus, Car or Other

$1.6(1)$	$2.6(8)$	$3.1(3)$	$2.5(7)$	$2.2(4)$
$14.8(9)$	$6.8(23)$	$3.1(3)$	$5.0(14)$	$6.0(11)$
$0(0)$	$0.6(2)$	$1.1(1)$	$0.7(2)$	$0.5(1)$
$0(0)$	$1.5(5)$	$3.1(3)$	$17.8(5)$	$1.1(2)$
$31.7(19)$	$49.4(151)$	$80.0(76)$	$47.9(134)$	$47.5(88)$


$51.0(26)$	$54.0(162)$	$49.5(47)$	$50.7(142)$	$51.3(95)$
$49.0(25)$	$46.0(138)$	$27.9(36)$	$40.7(114)$	$42.2(78)$
$14.5(51)$	$13.9(300)$	$14.7(73)$	$13.7(256)$	$14.0(173)$
$9.7(26)$	$9.4(162)$	$9.7(47)$	$9.4(142)$	$9.3(95)$
$19.6(25)$	$19.2(138)$	$17.3(36)$	$19.1(114)$	$19.9(78)$

Lunch Type:
School - Hot:

$34.4(21)$	$37.4(125)$	$59.0(56)$	$44.7(125)$	$37.3(69)$
$14.3(3)$	$14.3(7)$	$3.6(2)$	$3.2(4)$	$2.9(2)$
$85.7(18)$	$85.7(118)$	$96.4(54)$	$96.8(121)$	$97.1(67)$
$26.2(16)$	$32.0(107)$	$34.8(33)$	$33.2(93)$	$32.4(60)$
$1.6(1)$	$2.7(9)$	$3.2(3)$	$2.9(8)$	$2.7(5)$
$19.7(12)$	$17.1(57)$	$12.6(12)$	$16.4(46)$	$18.4(34)$

Average Score Stanford
Subtest (percentile):
Paragraph Meaning 28.1 (61)
$59.8(307)$
Arithmetic Computation
$28.1(61)$
$32.2(61)$
$66.3(303)$

$68.9(239)$
$72.2(185)$ School Pays Home Pays
School-Box:
None
other

$11.5(7)$	$17.7(59)$	$7.4(7)$	$18.6(52)$	$24.3(45)$
$6.6(4)$	$10.2(34)$	$12.6(12)$	$11.4(32)$	$10.8(20)$
$34.4(21)$	$38.9(130)$	$40.1(38)$	$39.6(111)$	$39.4(73)$
$23.0(14)$	$18.9(63)$	$22.2(21)$	$18.2(51)$	$16.2(30)$
$6.6(4)$	$3.9(13)$	$5.3(5)$	$3.6(10)$	$2.7(5)$

* 7 students hiad scores in both upper and lower quartiles. + ERIC male parent is missing, female parent occupation is substituted.


## District E

Table 10 summarizes selected information for third grade students classified according to placement in overage or non-overage groups. Students will be considered overage ff their birthdays fall before January 1, 1961. The table reveals the following trends:

With increasing overage placement:

1. A trend toward an increasing proportion of students with reported learning disabilities (falls off for oldest groups).
2. A slight trend toward increasing proportion of gtudents with foreign language spoken at home (falls off for oldest groups).
3. An increase in proportion of students with male parents missing, step-, ox other.
4. An increase in proportion of students with professional or self-employed fathers (falls off for oldest groups).
5. A decrease in proportion of students with skilled fathers (trend reverses for oldest group).
6. An increase in proportion of students with unskilled or unemployed fathers.
7. An increase in proportion of Spanish-American, Indian, and Oriental students (trend falls off for Indian students for oldest age group). A decrease in proportion of Black students.
8. A decrease in proportion of girls.
9. A trend toward an increase in proportion of students who walk or ride bike.
10. The time to school renains relatively stable for all groups overall. There is a trend toward a decrease in time to school for students who walk or ride bike, for others no definite trend.
11. A trend toward an increase in proportion of students with hot lunch. An increase in proportion of students vith no lunch.
12. A slight trend toward an increase in achievenent on both standaxdized test sub-scores.

Table 10
District E, 3rd Grade Overage vs. Non-Overage

	Percent Overage over 12 mos. $(N=7)^{*}$	Percent Overage over 6 mos. ( $\mathrm{N}=24$ )	Percent Overage Group ( $\mathrm{N}=63$ )	Percent Total   Population ( $\mathrm{N}=219$ )	Percent Non-overage ( $\mathrm{N}=156$ )
Learning Limitations (Yes only):	14.3(1)	29.2 (7)	38.2(24)	32.8(72)	30.8(48)
Foreign Language Spoken at Home (Yes only):	14.3(1)	16.7 (4)	15.9(10)	15.5(34)	15.4(24)
Male Parent: missing, step-parent or other	O(0)	33.3(8)	25.4(16)	16.0 (35)	12.2(19)
Occupation of Male Parent: ${ }^{+}$					
Professional	$0(0)$	12.5 (3)	14.3(9)	12.8(28)	12.2(19)
Self-Employed	0(0)	8.4 (2)	12.7 (8)	$12.3(27)$	12.2(19)
Skilled	85.7 (6)	45.8 (11)	46.0(29)	55.2 (121)	$58.9(92)$
Unskilled	0(0)	20.8(5)	17.5(11)	12.3(27)	10.3 (16)
Unemployed	14.3(1)	12.5(3)	9.5(6)	6.8(15)	5.8(9)
Students:					
Spanish-American	14.3 (1)	4.2(1)	4.8(3)	4.6 (10)	4.5(7)
Indian	$0(0)$	$4.2(1)$	$8.0(5)$	$7.8(17)$	$7.7(12)$
Black	0 (0)	$0(0)$	1.6 (1)	1.8 (4)	$1.9(3)$
Oriental, Other	14.3(1)	4.2(1)	$3.2(2)$	1.4 (3)	0.6 (1)
Girl Students	14.3 (1)	12.5(3)	30.2 (19)	45.2 (99)	$51.2(80)$
Transportation Type:					
Walk or Bike	14.3(1)	4.2(1)	6.4 (4)	8.7(19)	6.4(15)
Transportation Time (min.) : $\quad 85.7(6) \quad 95.8(23) \quad 93.6(59) \quad 91.3(200) \quad 90.4(141)$					
Walk or Bike	10.0 (1)	10.0 (1)	$21.5(63)$ $7.5(4)$	$21.3(219)$ $11.3(19)$	$21.3(156)$ $10.2(15)$
Bus, Car or Other	20.0(6)	23.0(23)	22.4(59)	22.3 (200)	22.3(141)
Lunch Type:					
School - Hot	$57.1(4)$	45.8(11)	54.0(34)	49.8(109)	48.1(75)
School Pays	0 (0)	18.2(2)	14.7(5)	14.7(16)	14.7(11)
Home Pays	100.0(4)	81.8 (9)	85.3(29)	85.3 (93)	85.3 (64)
School - Box	28.6 (2)	50.0 (12)	42.9 (2.7)	49.8(109)	$52.5(82)$
None	14.3(1)	4.2 (1)	$1.5(1)$	$0.4(1)$	O(0)
Average Score Stanford \%* Subtest (percentile):					
Paragraph Meaning	24.7 (3)	55.1 (12)	55.1(42)	54.5(197)	54.4(155)
Arithmetic Computation	53.4(3)	74.9 (12)	72.9 (42)	70.7 (197)	70.3(155)

* 1 student Birthdate listed as $02 / 22 / 56$ ?
** 19 students no Staniord Subtests.
* When male parent is missing, female parent occupation is substituted.


## STUDENTS CLASSIFIED BY QUARTILE STANDJNG

District E

Table 11 summarizes selected information for students classified on the basis of performance on the Stanford Achievement sub-tests: Paragraph Meaning (PA) and Arithmetic Computation (AR). The table reveals the following trends:

With decreasing quartile placement:

1. An increase (and then a decrease) in proportion of students with reported learning limitations.
2. An increase in overage placement (falls off at lowest quartile for oldest aged groups).
3. A decrease in proportion of students with foreign language spoken at home.
4. A trend toward an increase in proportion of male parents missing, step-, or other (falls off at lowest quartile).
5. A trend toward a decrease in proportion of students with professional, self-employed, or skilled fathers (falls off at lowest quartile for students with professional fathers).
6. A trend toward an increase in proportion of students with unskilled or unemployed fathers.
7. A decrease in proportion of Spanish-Amertcan students and an an increase in proportion of Indian and Black students (trend falls off for Indians in lowest quartile).
8. A decrease in proportion of girls.
9. An increase in proportion of students who walk or ride bike.
10. A slight decrease in time to school for students who walk or ride bike and a slight increase in time to school for students who take bus, car or other to school (falls off for lowest quartile students).
11. An increase in proportion of students with hot lunch. A decrease in proportion of students with box lunch.
12. A decrease in average placement on both performance measures.

Table 11

District E, 3rd Grade
Lowest Quartile Students vs. Others

	Percent Lower Q $(\mathbb{N}=32)$	Percent Total Population ( $\mathrm{N}=219$ )	Percent MLddle Q Groups $(N=78)$	Percent Upper 3/4 Group ( $\mathrm{N}=192$ )	$\begin{gathered} \text { Percent } \\ \text { Upper } 1 / 4 \\ \text { Group } \\ (\mathrm{N}=114) \\ \hline \end{gathered}$
Learning Limitations (Yes only):	27.2(9)	32.8 (72)	42.3 (33)	32.8 (63)	26.3 (30)
Overage:					
Up to 6 mos .	18.2(6)	17.8(39)	18.0(14)	17.7(34)	17.5(20)
6 to 12 mos.	3.0 (1)	$7.8(17)$	$11.5(9)$	8.3 (16)	6.1 (7)
$12 \mathrm{mos}$. and over	6.3 (2)	$3.2(7)$	6.4 (5)	3.1 (6)	0.9 (1)
Foreign Language Spoken at Home (Yes only):	3.0 (1)	15.5(34)	16.7(13)	17.2(33)	17.6(20)
Male Parent: missing, step-parent or other	9.4 (3)	16.0(35)	24.4(19)	$16.7(32)$	11.4 (13)
Occupation of Male Parent: ${ }^{+}$					
Professional	18.2 (6)	12.8(28)	5.1 (4)	12.0(23)	16.7(19)
Self-Employed	9.4 (3)	12.3 (27)	9.0 (7)	$13.0(25)$	$15.8(18)$
Skilled	50.0 (16)	$55.2(121)$	51.4 (40)	$56.3(108)$	$59.6(68)$
Unskilled	18.2 (6)	$12.3(27)$	$21.8(17)$	$10.9(21)$	$3.5(4)$
Unemployed	$3.0(1)$	6.8 (15)	$12.8(10)$	$7.8(15)$	4.4 (5)
Students:					
Spanish-American	$3.0(1)$	4.6(10)	3.8 (3)	4.7(9)	5.3 (6)
Indian	9.4 (3)	$7.8(17)$	12.8(10)	7.3 (14)	$3.5(4)$
Black	$6.3(2)$	1.8 (4)	$2.6(2)$	$1.0(2)$	0(0)
Oriental, Other	$0(0)$	3.2(2)	$0(0)$	$1.0(2)$	1.8(2)
Gir1 Students	$40.7(13)$	$45.2(99)$	$42.3(33)$	45.4 (89)	48.2(55)
Transportation Type:	-	-			
Walk or Bike	O(0)	8.7 (19)	16.7 (13)	$9.9(19)$	$5.2(6)$
Bus, Car or Other	100.0(32)	$91.3(200)$	84.6 (66)	$90.7(174)$	$94.8(108)$
Transportation Time (min.) : 90.7(174) 94.8(100)					
Overa11	21.7(32).	21.3(219)	$21.8(79)$	21.3 (193)	21.9(114)
Walk or Bike	$0(0)$	$11.3(19)$	11.2(13)	11.3(19)	$11.7(6)$
Bus, Car and Other	$21.7(32)$	22.3 (200)	$23.9(66)$	$22.4(174)$	$21.5(108)$
Lunch Type:					
School - Hot	65.6(21)	$49.8(109)$	52.6(41)	47.4(91)	43.8(50)
School Pays	14.3 (3)	$14.7(16)$	22.0(9)	14.3(13)	$8.0(4)$
Home Pays	85.7 (18)	85.3(93)	78.0 (32)	85.7(78)	92.0(46)
School - Box	34.4 (11)	$49.8(109)$	47.4 (37)	$52.6(101)$	56.1 (64)
None	0 (0)	0.4 (1)	0 (0)	0 (0)	$0(0)$
Average Score Stanford:					
Paragraph Meaning	24.3 (41) \%	$54.5(197)$	30.8 (37)	$60.3(165)$	$68.9(128) *$ \%
Arithmetic Computation	38.2(41)*	70.7 (197)	47.6(37)	$73.2(165)$	$88.5(128) * *$

* 9 Students names and scores only, Lower Quartile. ** 14 Students names and scores only, Upper Quartile. 3 a male parent is missing, female parent occupation is substituted.


## STUDENT PERFORMANCE AND OTHER CHARACTERISTICS

AS A FUNCTION OF RESIDENCE AREA

District E

If students are identified as traveling to school by specific methods (walk, bike, or ride car or bus) and are classified according to time traveled, then certain patterns emerge. The students in this county were classified into four groups:

Walk up to 19 minutes
Ride car or bus up to 19 minutes
Ride car or bus 20 to 34 minutes
Ride car or bus 35 or more minutes
Proportions of students in these transportation classifications along with average performances, proportion overage, and proportion of ethnics were computed. The results are displayed in Table 12, arranged in order of average time to school.

Table 12 shows the following:

1. A trend toward an increase in proportion of crerage students with increasing time to school (falls off for largest time group).
2. A trend toward an increase in proportion of lower quartile students with increasing time to school.
3. A decrease in average performance in the Paragraph Meaning sub-test with increasing time to school. There is an incomplete trend in this direction for both the overage and the lower quartile students.
4. A trend toward a decrease in average performance on the Arithmetic Computation sub-test with increasing time to school. Similar (though incomplete) trends are present in the same direction for the overage and lower quartile students.
5. A trend toward an incxease in proportion of ethnics with increasing time to school (not complete).



$$
\begin{array}{r}
(\varsigma) 0^{\circ} \varepsilon \\
(\varepsilon I) 6^{\circ} L \\
(0) 0 \\
(6) \varsigma^{\circ} \varsigma \\
\hline \begin{array}{c}
* *^{\circ} \text { doId } \\
0 \text { गemOT }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{cc}
\begin{array}{c}
\text { Time } \\
(\text { min })
\end{array} & \begin{array}{c}
\text { Total } \\
\text { prop.* }
\end{array} \\
\begin{array}{l}
\text { Overage } \\
\text { prop.* }
\end{array} \\
9.2(63) & 38.2(63)
\end{array} 4.3(7) \\
& 11.3(19) 11.5(19) 24.2(4) \\
& 23.4(61) 37.0(61) 12.7(21 .) \\
& 45.9(22) \\
& 13.3(22) \\
& 18.2(3)
\end{aligned}
$$



# OVERAGE Vs. NON-OVERAGE STUDENTS 

District $F$

# STUDENTS CLASSIFEED BY QUARTILE STANDING <br> District $F$ 

STUDENT PERFORMANCE AND AGE AS A FUNCTION Of RESTDENCE AREA

District F

Discussion of the data for the thind grade students for this county is included in the previous WN-REC publication:

Overage Students and Students in Lowest Quartile, District F, Third, Eighth, Ninth Grades, by Theodore G. Brough (Lovelock, Nev.: Western Nevada Regional Education Genter, Sept. 15, 1970), 8 pp.

## District G

Table 13 summaxizes selected information for third grade students classified according to placement in overage or non-overage groups. Students will be considered overage if their birthdays tall before January 1, 1961. The table reveals the following trends:

With increasing overage placement:

1. A decrease in proportion of students with reported learning 1imitations.
2. A decrease in the proportion of students speaking a foreign language at home.
3. An increase in the proportion of studente with male parents missing, step-, or other.
4. An increase in the proportion of students with professional or unskilled fathers.
5. A decrease in the proportion of students with skilled or unemployed fathers. (This trend does not hold up for the oldest students with skilied fathers.)
6. An increase in proportion of Spanish-American and Indian students (falls off for oldest Indian group).
7. A decrease in proportion of girls (increases for the oldest group).
8. A trend toward a decrease in proportion of students who walk or ride bike (but not for oldest age group).
9. An increase in time to school for overall and for bus and car students, and a decrease for students who walk or ride bike (these trends fall off for the oldest age group).
10. A decrease in proportion of students who have hot lunch, with a corresponding increase in proportion of students who have box Iunch.
11. A decrease in proportion of students who have luach-other, but an increase in such proportion among the overage groups.
12. A decrease in average performance on both achievement sub-tests.

District G; 3rd Grade Overage vs. Non-Overage

	Percent Overage over 12 mos. $(\mathrm{N}=5)$	Percent Overage over 6 mns. $(\mathrm{N}=28)$	Percent Overage Group ( $\mathrm{N}=56$ )	Percent Total Population ( $\mathrm{N}=198$ )	Percent Non-overage $(N=142)$
Learning Limitations (Yes only):	O(0)	7.2(2)	8.9 (5)	14.2 (28)	16.2(23)
Foreign Language Spoken at Home (Yes only):	0(0)	$0(0)$	1.8(1)	4.0(8)	$4.9(7)$
Male Parent: missing, step-parent or other:	0 (0)	21.4(6)	17.9 (10)	16.7(33)	16.2(23)
Occupation of Male Parent: ${ }^{+}$					
Professional	$0(0)$	21.4 (6)	12.5 (7)	5.6(11)	$2.8(4)$
Self-Employed	0 (0)	10.7 (3)	$10.7(6)$	10.6 (21)	10.6 (15)
Skilled	80.0 (4)	42.9(12)	48.2(27)	56.6 (112)	59.8 (85)
Unskilled	20.0(1)	17.8 (5)	17.9(10)	17.7(35)	17.6(25)
Unemployed	0 (0)	O(0)	3.6(2)	4.5(9)	4.9(7)
Students:					
Spanish-American	0 (0)	$7.2(2)$	3.6(2)	4.0 (8)	4.2(6)
Indian	0 (0)	$7.2(2)$	8.9 (5)	7.1 (14)	6.3 (9)
Black	0 (0)	O(0)	0 (0)	$0(0)$	0 (0)
Oriental, Other	0 (0)	0 (0)	0 (0)	0 (0)	$0(0)$
Girl Students	40.0(2)	32.2(9)	35.8(20)	58.5(116)	67.6(96)
Transportation Type:					
Walk or Bike	40.0(2)	21.4 (5)	21.4(12)	27.8 (55)	$30.3(43)$
Bus, Car or Other	60.0(3)	78.5(22)	75.0(42)	70.2(139)	69.0 (97)
Transportation Time (min.) :					
Overall	12.4 (5)	19.2 (28)	18.4(54)	16.7 (197)	16.0(143)
Walk or Bike	$7.5(2)$	6.8 (6)	7.8(12)	9.3 (57)	$9.7(45)$
Bus, Car or Other	15.7 (3)	22.6(22)	21.4(42)	$19.7(140)$	18.4(98)
Lunch Type:					
School - Hot	20.0.(1)	35.7 (10)	42.6 (23)	46.1 (89)	47.4(66)
School Pays	100.0(1)	10.0 (1)	17.4 (4)	6.7 (6)	3.0 (2)
Home Pays	0 (0)	90.0 (9)	82.6(19)	$93.3(83)$	$97.0(64)$
School - Box	60.0(3)	56.1 (16)	51.9(28)	45.6 (88)	43.1(60)
None	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Other	20.0(1)	$7.2(2)$	5.6(3)	8.4(16)	9.4 (13)
Average Score Stanford Subtest (percentile):					
Paragraph Meaning	32.8(4)	42.0(24)	43.3(46)	50.5(205)*	59.5(133)
Arithmetic Computation	42.0 (4)	54.9 (24)	54.0(46)	57.8(206)*	54.2(130)

* 30 students, names and scores only
+ When male parent is missing, female parent occupation is substituted.


## District $G$

Table 14 sumarizes selected infomation for students classified on the basis of performance on the Stonford Achlevement sub-tests: Paragraph Meaning (PA) and Arithmetic Computation (AR). The table reveals the following trends:

With decreasing quaxtile placement:

1. A trend toward an increase in proportion of students with reported learning limitations.
2. A trend toward an increase in proportion of students who are overage. This is an incomplete trend (peaks at mid= quartile) for the students up to six months and six to 12 months overage.
3. A trend toward a decrease in the proportion of students with Foreign language spoken at home.
4. A trend toward an increase in the proportion of students with male parents missing, step-, or other.
5. A trend toward a decrease in the proportion of students with professional, self-employed, and unskilled fathers. The proportion of students with skilled fathers remains virtually constant for all groups. There is a trend toward an increase in the proportion of students with unemployed fathers.
6. An increase, then a decrease, in the proportion of students who are Spanish-American or Indian.
7. An increase and then a decrease in the proportion of girl students.
8. An increase in the proportion of students who walk or ride bike.
9. A trend toward an increase in the time to school for students who walk or ride bike. There is a similar trend for those sfudents who ride bus or car to school.
10. A crend toward an increase in the proportion of students who have hot lunch, with a corresponding decrease in the proportion of students who have sack lunch.
11. A decrease in the average performance of students in both Stanford Achievement sub-tests.

Table 14
District G, 3rd Grade
Lowest Quartile Students vs. Others

	Percent   Lower Q   $(N=48)$	Percent Total. Population ( $N=198$ )	Percent Widdle Q Groups ( $\mathrm{N}=75$ )	```Percent Upper 3/4 Group ( }\textrm{N}=153\mathrm{ )```	```Percent Upper 1/4 Group (N=78)```
Learning Limitations (Yes only):	14.6 (7)	$14.2(28)$	16.9(12)	13.7 (21)	11.5(9)
Overage:				-	-
Up to 6 mos.	14.6(7)	$14.2(28)$	18.7(14)	13.7 (21)	9.0 (7)
6 to 12 mos.	10.4.5)	11.6(23)	14:7(11)	11.8(18)	9.0 (7)
12 mos. and over	4.2(2)	2.5(5)	2.7(2)	2.0 (3)	$1.3(1)$
Foreign Language Spoken at Home (Yes only)	$4.2(2)$	$4.0(8)$	1.3 (1)	3.9 (6)	6.4 (5)
Male Parent: Missing, Step or Other	16.7(8)	16.7 (33)	25.4 (19)	17.6(27)	10.3(8)
Occupation of Male Parent:*					
Professional	6.3 (3)	5.6 (11)	O(0)	$5.2(8)$	10.3(8)
Self-Employed	10.4(5)	10.6 (21)	9.3 (7)	10.5(16)	11.5(9)
Skilled	56.3(27)	56.6 (112)	$56.0(42)$	$56.2(86)$	56.4(44)
Unskillea	14.6(7)	17.7 (35)	21.6(16)	18.9 (29)	16.7(13)
Unemployed	10.4 (5)	$4.5(9)$	$1.3(1)$	3.3(5)	5.1 (4)
Spanish-American	2.1 (1)	4.0 (8)	6.7 (5)	$4.6(7)$	$2.6(2)$
Indian .	6.3 (3)	7.1 (14)	9.3 (7)	$7.2(11)$	5.1 (4)
Black	0 (0)	$0(0)$.	$0(0)$	0 (0)	$0(0)$
Oriental, Other	$0(0)$	0 (0)	O(0)	$0(0)$	0(0)
Girl Students	40.7 (20)	$58.5(116)$	82.6(62)	63.4(97)	$44.9(35)$
Transportation Type:					
Walk or Bike	37.5(18)	27.8 (55)	26.7 (20)	25.5(39)	24.3(19)
Bus, Car or Other	56.3(27)	$70.2(139)$	73.3 (55)	74.5 (114)	75.7 (59)
Transportation Tirne (min.) :					
Overall	16.6 (44)	16.7(197)	17.3(79)	16.6(1.56)	15.9(77)
Walk or Bike	$9.8(18)$	9.3 (57)	$9.7(21)$	$7.9(41)$	8.1(20)
Bus, Cax or Other	21.4(26)	$19.7(140)$	20.0(58)	18.5(115)	18.6(57)
Lunch Type:					
School - Hot:	51.1 (23)	46.1 (89)	$54.8(40)$	45.0 (68)	$35.9(28)$
School Tays	8.7 (2)	6.7 (6)	$10.0(4)$	5.9 (4)	$0(0)$
Hone Pays	91.3(21)	93.3(83)	$90.0(26)$	94.1 (64)	100.0(26)
School -- Box:	$37.8(17)$	$45.6(88)$	39.7 (29)	47.0 (71)	$53.9(42)$
None:	0 (0)	0 (0)	O(0)	O(0)	0 (0)
Other:	11.1.5)	8.4(16)	5.5(4)	$8.0(12)$	10.3 (8)
Average Score Stanford Subtest (percentile):					
paragraph Meaning ..	23.1 (56)*	$50.5(205)$ \% $\%$	$48.0(66)$	$59.9(154)$	$68.8(88) *$
Arithmetic Computation	$31.2(57) \%$	'57.8(206)**	52.3 (64)	$68.1(154)$	79.4(90)*

rin male parent $1 s$ missing, female parent occupation is substituted.


[^0]:    * Percentage of total population
    ** Percentage of pupils with test

    U** Percentage of pupils with test scores reported

[^1]:    LQ: Students placing in lower quartile of either subtest

[^2]:    O male parent is missing, female parent occupation is substituted.

[^3]:    When Male Parent is missing, Female Parent Occupation is substituted.

[^4]:    * If Male Parent is missing, Female Parent is substituted (shown in parentheses).
    **Estimated from Stanford Subscores, see discussion for technique.
    + Overage up to 6 months
    Hoverage 6 months and over
    O Underage

[^5]:    *Published by Harcourt, Brace \& World, New York, 1964.

[^6]:    TSome Dustricts tested in the Fath of 1969 (at 9.2 ), but the differences In grade placement levels between late Spring and early Eali ara minor, see p. 21 of Directions for Administering. Stanford Achievement Test, Advanced Battery (Larcourt, Brece and World, 2964 .
    ${ }^{N *} N=965$.

[^7]:    *Means, based on National Norms:

[^8]:    Means, Uased on National Noms:
    Word Meaning: $\quad 3.72,41 \%$
    Paragraph Meaning: 3.85, 48\%
    Science \& Social
    Studies: - 4.03, 54\%
    Spelling: 3.91, 50\%
    $N=1019$.

[^9]:    *Dixections for Administering, Stanford Achievement Test, Primary II Battery (Harcourt, Brace and World, New York, 1969), pp. 28, 29.

    Directions for Administering, Stanford Achievement Test, Advanced Battery (Harcourt, Brace and World, New York, 1964), pp. 19, 20.

[^10]:    *Directions for Administering, Stanford Achievement Test, Advanced Battery (Harcourt, Brace and World, New York, 1969), pp. 19, 20.
    ** No Q 2 scores were computed for this set of scores. The means were computed, however, and were used in place of the $Q$ 2. They should differ only slightly from the true $Q 2$ scores.

[^11]:    *irections for Administering, Stanford Achievement Test, Advanced Battery (Harcourt, Brace and World, New York, 1969), pp. 19, 20.

[^12]:    *irections for Adrainistering, Stanford Achievement Test, Prinary II Battery (Harcourt, Brace and World, New York, 1969), pp. $28,29$.

